
INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 14 (2002) 8043–8055 PII: S0953-8984(02)36797-3

Variable-range hopping conductivity in
La1−xCaxMn1−yFeyO3: evidence of a complex gap in
density of states near the Fermi level

R Laiho1, K G Lisunov1,2, E Lähderanta1,3, P A Petrenko2, J Salminen1,
M A Shakhov1,4, M O Safontchik1,4, V S Stamov1,2, M V Shubnikov1,4

and V S Zakhvalinskii1,2

1 Wihuri Physical Laboratory, Department of Physics, University of Turku, FIN-20014 Turku,
Finland
2 Institute of Applied Physics, Academiei Str. 5, MD-2028 Kishinev, Moldova
3 Physics, University of Vaasa, PO Box 700, FIN-65101 Vaasa, Finland
4 A F Ioffe Physico-Technical Institute, 194021, St Petersburg, Russia

Received 9 May 2002
Published 15 August 2002
Online at stacks.iop.org/JPhysCM/14/8043

Abstract
The resistivity, ρ, of ceramic La1−x Cax Mn1−yFeyO3 with x = 0.3 and
y = 0.0–0.09 is found to obey, between a temperature Tv ≈ 310–330 K
and the ferromagnetic-to-paramagnetic transition temperature, TC = 259–
119 K (decreasing with y), the Shklovskii–Efros-type variable-range hopping
conductivity law, ρ(T ) = ρ0(T ) exp[(T0/T )1/2]. This behaviour is governed
by generation of a soft Coulomb gap � ≈ 0.42 eV in the density of localized
states and a rigid gap δ(T ) ≈ δ(Tv)(T/Tv)

1/2 with δ(Tv) ≈ 0.16, 0.13 and
0.12 eV at y = 0.03, 0.07 and 0.09, respectively. Deviations from the square
root dependence of δ(T ), decreasing when y is increased, are observed as
T → TC . The prefactor of the resistivity follows the law ρ0(T ) ∼ T m , where
m changes from 9/2 at y = 0 to 5/2 in the investigated samples with y = 0.03,
0.07 and 0.09, which is connected to introduction of an additional fluctuating
short-range potential by doping with Fe.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The colossal magnetoresistance (CMR) or huge drop in the resistivity ρ in an external magnetic
field, B , near the paramagnetic (PM) to ferromagnetic (FM) transition temperature, TC , of
La1−x Cax MnO3 (LCMO) and related mixed-valence manganites, has attracted much interest
since its discovery [1, 2]. In addition to Mn3+, these compounds contain Mn4+ as a result of
substitution of a divalent alkaline element for La3+ (hole doping). It is generally believed that
the conductivity of manganites is governed above TC by hopping of small polarons connected
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to local Jahn–Teller distortions [3] and that the large drop in ρ(T) near the resistivity maximum,
Tm , which is close to TC , in compounds with x ≈ 0.33 is due to a metal–insulator transition [4].
In particular, the adiabatic nearest-neighbour hopping (NNH) of small polarons leading to
ρ(T ) = ρ0 exp(Wh/kT ), with ρ0∼ T and Wh = 865 K, has been observed in bulk and film
LCMO samples within a wide interval of T = 300–700 K [5].

Below room temperature down to TC both the NNH polaron model [6, 7] and the Mott
variable-range hopping (VRH) conductivity mechanism [8–10] were applied to interpret the
resistivity of different mixed-valence manganites. The point is that, in disordered materials,
the probability of finding an empty nearest site with a proper energy level decreases rapidly
with lowering temperature. Therefore, the conductivity is determined by competition of
two processes, connected to hopping between the nearest sites with large energy differences
or to hopping between sites beyond the nearest neighbours with small energy differences.
Mott [11] was the first to show that, under these conditions, hopping is possible inside an
optimum energy strip (εmax − µ, εmax + µ) around the Fermi level, µ. For constant density
of the localized states (DOS) inside the interval of (εmax − µ, εmax + µ) he found the law
ρ(T ) = ρ0 exp[(T0M/T )1/4]. In general, transition to the VRH conductivity with lowering T ,
supposed in [8–10], is physically plausible due to the universality of Mott’s conclusion about
the role of the optimum energy strip in hopping conductivity. However, the results of these
works need some reconsideration from the viewpoint that the behaviour of the DOS inside the
interval (εmax − µ, εmax + µ) is non-universal.

Shklovskii and Efros (SE) [12] have shown that, due to the Coulomb interaction between
the localized charge carriers, a soft parabolic gap, �, appears in the DOS in the interval of
(µ − �,µ + �), giving rise to the resistivity ρ(T ) = ρ0 exp[(T0SE/T )1/2]. Therefore, the
effects connected to the Coulomb gap may be neglected until the relation of εmax(T ) > � is
satisfied. This may be possible if the temperature is sufficiently high or the Coulomb interaction
between the carriers is small. In LCMO with x ≈ 0.33 the average distance between the holes
is about the lattice parameter, resulting in a strong Coulomb interaction. Therefore, neglect of
� when lowering the temperature requires special substantiation.

It appears that in manganites the behaviour of DOS is even more complicated. In the
scanning–tunnelling spectroscopy study of a LCMO film with x = 0.2 parabolic dependence
of DOS on energy, g(ε), was found inside an interval of ∼0.4 eV around µ at T between
∼160 and 370 K [13]. In addition, for T near Tm = 196 K a rigid gap (g(ε) = 0) with
width δ ≈ 0.11 eV around µ was observed. This gap has a maximum at T shifted from TC

and vanishes below ∼155 K. The soft gap was attributed to Coulomb interactions between
localized electrons and the rigid gap to the Jahn–Teller effect [13].

Another detail, which has not received sufficient attention in the analysis of the resistivity
of manganites, is the temperature dependence of the prefactor ρ0. The point is that both the
Mott and SE models were proposed initially to interpret the VRH conductivity usually found
in doped crystalline semiconductors at liquid helium temperatures with negligible dependence
of ρ0 on T . Because in LCMO and the related CMR materials the hopping conductivity is
observed at much higher temperatures, extrapolation of ρ0(T ) from the low-temperature region
is not justified.

Due to the similarity of the ionic radii of Mn3+ and Fe3+, doping with iron is expected to
cause only minor lattice distortions in La1−x Cax Mn1−yFeyO3 (LCMFO) [14]. At a low doping
level direct replacement of Mn3+ by Fe3+ is expected [15], introducing additional antiferro-
magnetic interactions [16]. This is one of the reasons leading to a considerable diminution of
TC in LCMFO when y is increased [14]. Another reason is the additional microscopic disorder
in the cation sublattice introduced by doping with Fe [17]. The strong dependence of TC on y
offers a good possibility for investigations of the VRH conductivity in LCMFO.
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Figure 1. (a) Temperature dependence of the resistivity of the investigated samples in zero field
(full curves) and in the field of 10 T (open symbols). (b) Temperature dependence of the resistivity
of no 3-7 measured in the field of B = 0, 2, 4, 6 and 8 T (from top to bottom). (c) Temperature
dependence of χZ FC and χFC measured in the field of B = 2 G for no 3-3 (full curves) and for no
3-7 (open symbols).

In this paper we investigate the temperature dependence of the resistivity of LCMFO,
paying special attention to the electronic spectrum and the conductivity mechanism. Such
investigations are expected to provide important microscopic information about localized
charge carriers in this compound.

2. Experimental results

LCMFO with x = 0.3 and y = 0, 0.03, 0.07 and 0.09 (samples no 3-0, 3-3, 3-7 and 3-9,
respectively) were synthesized with standard ceramic procedures by heating stoichiometric
mixtures of La2O3, CaCO3, Mn2O3 and Fe2O3 in air at 1320 ◦C, at first for 15 h and then for
5 and 15 h and finally at 1375 ◦C for 22 h, with intermittent grindings. According to x-ray
diffraction data the iron-doped samples have the same undistorted cubic structure (space group
Pm3m) as undoped La0.7Ca0.3MnO3 (sample no 3-0) [18]. Investigations of ρ(T ) were made
using the conventional four-probe technique in the transverse magnetic field configuration
(B ⊥ j) for B = 0–10 T. The sample probe was inserted in a He exchange gas dewar, where
its temperature could be varied between 4.2 and 350 K to an accuracy of 0.5%. Magnetization
M(T ) was measured with an rf-SQUID magnetometer after cooling the sample from room
temperature down to 5 K in zero dc field (ZFC) or in the field of B = 2 G (FC). The temperature
of the sample space was controlled to an accuracy of ±1 K.

The plots of ρ(T ) shown in figure 1(a) for no 3-0, 3-3, 3-7 and 3-9 for B = 0 (full
curves) and 10 T (open symbols) and in figure 1(b) for no 3-7 and B between 0–10 T, are
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Table 1. The values of the relative concentrations of Fe y, the PM–FM transition temperature TC ,
the temperature of the onset of VRH Tv , the characteristic VRH temperatures T0, the coefficients
A, the width of the Coulomb gap �, the ratio b1/b2, the width of the rigid gap δ(Tv) and the
localization radius a.

Sample TC Tv T0 A � δ(Tv) a

no y (K) (K) (104 K) (� cm K−m) (eV) b1/b2 (eV) (Å)

3-0 0.01 259 319 8.1 2.5 × 10−20 0.44 — — —
3-3 0.03 228 ≈330 7.7 5.0 × 10−14 0.43 1.31 ± 0.05 0.16 2.9
3-7 0.07 139 310 7.3 3.0 × 10−14 0.40 1.26 ± 0.06 0.13 2.7
3-9 0.09 119 316 7.7 3.5 × 10−14 0.41 1.21 ± 0.04 0.12 2.5

typical for hole-doped manganite perovskites, including with decreasing T a strong increase
up to a maximum at Tm , a decrease with lowering T further and a weak dependence in the
low-temperature region. Both ρ and the drop of ρ(T ) near Tm between B = 0 and 10 T are
increased strongly when y is increased. Additionally, in no 3-9 ρ(T ) starts to increase again
with lowering T sufficiently below Tm . Generally, the observed dependence of ρ on T , B and
y agrees with the behaviour known from literature [9, 14].

The plots of χZ FC(T ) and χFC(T ) (where χ = M/B) for sample no 3-0 are similar to
those in figure 1(c) for no 3-3 and in the case of no 3-9 to those in figure 1(b) for no 3-7. All
the samples exhibit a steep PM–FM transition with TC decreasing strongly when y is increased
(see table 1). Magnetic irreversibility (deviation of χZ FC(T ) from χFC(T )) is observed just
below the transition.

3. Discussion

Following the discussion in the introduction, the resistivity can be written in a universal form:

ρ(T ) = ρ0(T ) exp[(T0 j/T )p], (1)

where the prefactor ρ0(T ) and the characteristic temperature T0 j depend on the hopping
mechanism. Hopping over the nearest sites (NNH) corresponds to the value of p = 1, while
the VRH conductivity governed by the Mott and SE mechanisms is characterized by p = 1/4,
T0 j = T0M or p = 1/2, T0 j = T0SE , respectively, where

T0M = βM/[kg(µ)a3] and T0SE = βSE e2/(κka). (2)

Here βM = 21, βSE = 2.8 and g(µ) is the DOS at the Fermi level, a is the localization radius
of charge carriers and κ is the dielectric constant [11, 12].

In conventionaldoped semiconductors when both T and T0 j are small the strong inequality
(see appendix)

	 ≡
[

kT (T0 j/T )pa

2h̄s

]2

� 1 (3)

is satisfied and the temperature dependence of ρ0(T ) is weak [19] (see table 2). For the mixed-
valence manganites T0M ∼ 103–106 and a ∼ 1–9 Å have been reported [8–10]. Together
with observations of VRH up to room temperature, these data contradict the inequality (3)
(for estimations one can use s = 6.8 × 105 cm s−1 for LCMO [20]), but are consistent with
	 � 1. An analysis of the resistivity of the CMR compounds without taking into account this
difference may contain a source of error.
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Figure 2. Density of states near the Fermi level µ at the energy ε > µ. � is the width of the soft
Coulomb gap, δ is the width of the rigid gap and εmax is the width of the optimum energy strip.

Table 2. Values of p and m for different regimes of VRH.

The type of VRH and wavefunction q p m (	 � 1) m (	 � 1)

SE, ψ(r) ∼ exp(−r/a) 0 1/2 1/2 9/2
Mott, ψ(r) ∼ exp(−r/a) 0 1/4 1/4 25/4
SE, ψ(r) ∼ r−1 exp(−r/a) 4 1/2 −3/2 5/2
Mott, ψ(r) ∼ r−1 exp(−r/a) 4 1/4 −3/4 21/4

Another important point is the possible existence of the rigid gap around the Fermi level.
The DOS, containing both the soft parabolic Coulomb gap � and the rigid gap δ, is given
by g(ε) = 0 for µ − δ < ε < µ + δ, α3(κ

3/e6)(ε − µ + δ)2 for µ − � < ε < µ − δ,
α3(κ

3/e6)(ε − µ − δ)2 for µ + δ < ε < µ + � and g0 for ε < µ − � and ε > µ + �, where
g0 is the value of the DOS outside the gap and α3 = 3/π [12]. g(ε) is symmetric around the
Fermi level (see figure 2 for ε > µ) and coincides at δ = 0 with the DOS that contains only
the Coulomb gap [12].

The expressions for the prefactor ρ0 and the characteristic temperature T0 for the case of
DOS given above (figure 2) and for an arbitrary value of 	 are obtained in the appendix. In
the limiting cases of 	 � 1 and 	 � 1ρ0(T ) is given by the equation

ρ0(T ) = AT m, (4)

where A is a constant (see the appendix) and the values of m are collected in table 2. It
can be seen that the temperature dependence of ρ0 is quite different for 	 � 1 and 	 � 1.
Additionally, the form of the localized carrier wavefunction, depending on the presence or
absence of a fluctuating short-range potential, is important (this is given by the value of q—see
the appendix). The characteristic temperature satisfies the equation

T0 =
(

δ

2k
√

T
+

√
δ2

4k2T
+ T0SE

)2

. (5)

In the cases when T0, given by equation (5), is independent of T , equation (1) (with T0 j = T0),
(4) and (5) give the temperature dependence of the resistivity directly. If a is independent of
T , these cases are (i) δ = 0, (ii) δ/(2kT ) � (T0SE/T )1/2 and δ ∼ T and (iii) δ ∼ T 1/2. For
(i) and (ii) we find that T0 = T0SE (in case (ii) ξc ≈ (T0SE/T )1/2 + δ/(2kT ), and if δ ∼ T , the
second term is constant and can be included in the prefactor), while in the third case T0 
= T0SE .
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Figure 3. Dependence of p on m for no 3-0 and no 3-3. Inset: dependence of ln(Ea/kT + m) on
ln(1/T ) for m = 9/2 (no 3-0) and 5/2 (no 3-3). The lines are fits to the experimental data.

Taking into account the data from table 2 for VRH conductivity at different limits of 	

we have, together with the NNH conductivity (where ρ0 ∼ T ), nine possible variants of the
temperature dependence of ρ0. Because m and p are interrelated, the following method of their
determination is proposed. As follows from equation (1), in the temperature interval where
T0 j is constant the local activation energy, Ea(T ) = d ln ρ(T )/d(kT )−1 [12], can be presented
in the form

ln[Ea/(kT ) + m] = ln p + p ln T0 j + p ln(1/T ). (6)

In an ideal case the left-hand side of equation (6) represents a linear function of ln(1/T ) for
a single value of m. Then p can be found from the slope of this plot. In practice, one should
analyse this dependence in a limited temperature interval above Tm . Therefore, the plots of
ln[Ea/(kT )+m] versus ln(1/T ) would be linear functions within some error for various m. In
this situation it is more consistent to vary m within some interval and to determine p for each
value of m, which gives the function of p(m). Using this function, one can choose a proper
pair of m and p in agreement with those in table 2.

As shown in figures 3 and 4, the plot of p(m) for each sample gives a single pair (p, m)

out of the possible combinations shown in table 2. For all samples the value of p ≈ 0.5,
corresponding to the existence of the soft Coulomb gap, is found. In no 3-3 the slightly lower
p ≈ 0.48 is due to a larger error in the relatively narrow interval of the linear dependence (see
the inset to figure 3). On the other hand, m ≈ 4.5 for no 3-0 is decreased to m ≈ 2.5 for
no 3-3, 3-7 and 3-9. For 	 � 1 this corresponds to a change of the form of the wavefunction of
the localized carrier as described in the appendix. Hence, doping with Fe influences strongly
the electronic properties of LCMO by inducing additional microscopic structural disorder in
the cation sublattice of LCMO. In the insets to figures 3 and 4 are shown the dependencies of
ln[Ea/(kT ) + m] on ln(1/T ) for m = 5/2 and 9/2, giving the temperature of the onset of the
SE-VRH regime (see table 1).

In figure 5 are displayed the dependencies of ln(ρ/T m) versus T −1/2 (curves 1) for no 3-0
(m = 9/2) and no 3-3, 3-7 and 3-9 (m = 5/2). They are compared with the plots of ln(ρ/T )

versus T −1 corresponding to the NNH regime (curves 2). The curves are fitted with linear
functions (dotted lines). The scales are picked up so that both lines have the same initial
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Figure 4. Dependence of p on m for no 3-7 and no 3-9. Inset: dependence of ln(Ea/kT + m) on
ln(1/T ) for m = 5/2. The lines are fits to the experimental data.

Figure 5. Comparison of the plots of ln(ρ/T m ) versus T −1/2 (m = 9/2 for no 3-0 and 5/2 for
no 3-3, 3-7 and 3-9) (curves 1) and ln ρ/T versus T −1 (curves 2) for (a) no 3-0, (b) no 3-3, (c)
no 3-7 and (d) no 3-9. The dotted lines are linear fits and the vertical dotted lines correspond to Tm

for both temperature axes.

point and T −1
m and T −1/2

m lie at opposite points of the T −1 and T −1/2 axes (they are given by
the vertical dotted lines). Neither of the plots contains a linear part up to Tm . Hence, the
quality of the linear fitting for each curve is given by an area of the figure lying between the
curve, the fitting line and the vertical dotted line corresponding to Tm . As can be seen from
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figure 5(a), although the linear parts of lines 1 and 2 for no 3-0 are almost the same, the area of
the corresponding figure constructed for line 1 is measurably smaller than that of line 2. For
samples no 3-3, 3-7 and 3-9 the difference between these figures is much larger. Therefore,
the SE VRH conductivity model describes the resistivity much better than the NNH model, in
agreement with the conclusion drawn from figures 3 and 4.

The linear part of the plots ln(ρ/T m) versus T −1/2 in figure 5 yields T0 and A collected
in table 1. The values of � evaluated with equation (A.14) are quite close to the interval of the
parabolic dependence of DOS (∼0.4 eV) found experimentally in [13]. The existence of the
temperature interval where T0 is constant, as is evident from figures 3–5, suggests that one of
the cases, mentioned in comments to equation (5), takes place. To find which case is realized,
we analyse the temperature dependence of the resistivity in the magnetic field. The localization
radius of small polarons in the PM phase was predicted to vary in the field according to the
law [22]

a(B) = a(0)(1 + b1 B2), (7)

where b1 ∼ χ(T ). If b1 B2 � 1, it follows from equations (2), (5) and (7) that

T0(B) = T0(0)(1 − b2 B2), (8)

where b2 = b1T0SE(0){T0(0) − [T0(0)/T ]1/2δ/(2k)}−1 until δ is independent of the magnetic
field. This gives

δ(T ) = 2
b1/b2 − 1

2b1/b2 − 1
k
√

T0(0)T . (9)

Near Tv , which is well above TC , the temperature dependence of χ can be neglected (see
figure 1). Therefore, in the temperature intervals in the vicinity of Tv the dependencies of T0

and A on B for no 3-3, 3-7 and 3-9 can be found from linear fits of the plots of ln(ρ/T 5/2)

versus T −1/2 in the field. For no 3-0 these dependencies could not be obtained because the
interval of the linearity of the plots of ln(ρ/T 9/2) versus T −1/2 in the field was found to be
insufficient. The dependence of a(B)/a(0) can be evaluated with equation (A.12). As can
be seen from figure 6 the plots of a(B)/a(0) versus B2 are linear functions up to B = 10 T,
while those of T0(B)/T0(0) versus B2 are linear up to B ≈ 8 T. As is evident from table 1, the
values of the ratio of b1/b2 are found to lie above unity and the deviation from unity is much
larger than the error. This means the existence of a non-zero rigid gap near Tv with values of
δ(Tv) shown in table 1.

To estimate the localization radius, we use the density of states proposed by Viret et al
[8], g0 ≈ N0φgη/W , where N0 = 1.74 × 1022 cm−3 is the concentration of Mn sites, W is
the width of the band of the localized states, η ≈ c = x − y is the concentration of the holes
or the probability that the Mn site receiving the hopping electron is unoccupied, φ ≈ 0.5 is a
geometric factor and g ≈ 1−c is the probability that an unoccupied Mn site can actually accept
an electron. The values of W can be calculated using the equation kTC ≈ 0.05Wc(1 − c)
predicted by Varma [22]. Then κ was evaluated with equation (A.13) and finally a was found
using equations (2) and (5) (see table 1). The obtained value of κ ≈ 3.4 is smaller than
the static dielectric constant, κ0 = 16 [23], because the average distance between the holes
in LCMFO, R = 2(4πcN0/3)−1/3, is about the lattice parameter l ≈ 7.7 Å of the cubic
LCMO structure [18]. This does not permit the performance of macroscopic averaging of the
Coulomb interactions of the holes, so that κ does not represent a true dielectric constant, but
rather an effective parameter lying between the limits 1 and κ0, corresponding to interactions
in a vacuum and in a medium. The values of a are smaller than the average distance between
the Mn sites, R0 = 2(4π N0/3)−1/3 = 4.8 Å, satisfying the requirement for small polaron
formation [11]. It can be shown also that the condition of 	 � 1 is satisfied.
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Figure 6. The dependencies of T0(B)/T0(0) and a(B)/a(0) on B2. The full lines are linear fits.

As follows from the analysis above, in the temperature interval where T0 is constant the
dependence of δ on T should be close to ∼ T 1/2 (see comments to equation (5)). It is possible
to evaluate the function δ(T ) within a wider temperature interval, using the magnetic field
dependence of T0 and the localization radius a shown in figure 6. Below, the values of the
parameters inside the interval where T0 is constant are marked by an asterisk (i.e. a∗, T ∗

0 and
T ∗

0SE ). Then, from equations (1), (4) and (A.12), excluding the unknown constant C , we obtain
the first equation

ln

[
ρ(T )

ρ(Tv)

(
Tv

T

)5/2]
= 11 ln

(
a

a∗

)
+

11

2
ln

(
T0

T ∗
0

)
+

(
T0

T

)1/2

−
(

T ∗
0

Tv

)1/2

(10)

connecting T0 and a. The second equation can be written in the form

T0/T ∗
0 = f (a/a∗) (11)

where the function f (γ ) can be obtained by excluding B from the magnetic field dependencies
of T0(B)/T0(0) and a(B)/a(0) in figure 6 (this gives a weakly nonlinear function which can
be approximated with a second-order polynomial). The solutions of the pair of equations (10)
and (11) within the intervals of 1 � a/a∗ � [a(B)/a(0)]max and [T0(B)/T0(0)]min �
T0/T ∗

0 � 1, for no 3-7 are shown in figure 7 (for the other samples they are similar).
Using the second of equations (2), we obtain the relative variation of T0SE/T ∗

0SE = a∗/a.
On the other hand, from equation (5) taken at T = Tv and the data in table 1 we find
T ∗

0SE = T ∗
0 −(T ∗

0 /Tv)
1/2δ(Tv)/k, for the temperature dependence of the absolute value of T0SE.

Finally, using the temperature dependencies of T0 and T0SE the function δ(T ) can be evaluated
with equation (5). The result is shown in figure 8 along with the function δ(Tv)(T/Tv)

1/2 (full
lines).

As can be seen from figure 7, for no 3-7 at B = 0 a is constant at temperatures well
above TC ≈ 150 K (see figure 1) and increases when T → TC . In a magnetic field the
dependence of a on T becomes stronger and the interval of constancy of a is decreased. Trying
to evaluate a(T ), T0(T ) and T0SE (T ) beyond the intervals of 1 � a/a∗ � [a(B)/a(0)]max

and [T0(B)/T0(0)]min � T0/T ∗
0 � 1, at which f (γ ) was determined from the magnetic field



8052 R Laiho et al

Figure 7. Temperature dependence of a/a∗ in the fields 0, 4 and 8 T (upper panel) and of T0/T ∗
0

(full curves) and T0SE/T ∗
0SE (symbols) (lower panel).

Figure 8. Temperature dependence of δ (lines with symbols) and δ(Tv)(T/Tv)
1/2 (full lines) for

no 3-3, 3-7 and 3-9 in zero field or in the fields of 4, 6 or 8 T. Near each curve is given the value of
the field B in T.
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dependencies in figure 6, we found that these parameters are finite down to Tm , below which
the system of equations (10) and (11) has no solutions. On the other hand, the conventional
metal–insulator transition requires a divergence of a which is not observed down to Tm .

As follows from figure 8, at temperatures well above TC , δ is close to δ(Tv)(T/Tv)
1/2

but deviates from it as T → TC . The deviation increases with increasing magnetic field and
decreases when y is increased. The absolute value of δ decays with y, as well. In our LCMFO
samples the values of δ(TC) are similar to δ = 0.11 eV in LCMO with x = 0.2 [13]. Those of
δ(Tv) are close to the polaron binding energy, Wp ≈ 2Wh ≈ 0.15 eV, in LCMO found from
the data of ρ(T ) between 300 and 700 K [5].

4. Conclusions

Resistivity of La0.7Ca0.3Mn1−yFeyO3 with y = 0.0, 0.03, 0.07 and 0.09 is investigated at
temperatures between 4.2 and 350 K and in magnetic fields between B = 0 and 10 T. It is
shown that the charge transfer above the PM–FM transition is governed by the Shklovskii–
Efros-type VRH conductivity mechanism, determined by the existence of a soft parabolic
Coulomb gap and, additionally, by a rigid gap in the spectrum of the density of localized
states around the Fermi level. The rigid gap depends on temperature. Well above TC this
dependence is close to δ(T ) ∼ T 1/2 but, as T approaches TC , δ(T ) exhibits deviations from
the square root behaviour. In addition, it decreases when the concentration of Fe is increased.
Near the temperature of the onset of VRH conductivity the values of δ are close to the polaron
binding energy, while at T ∼ TC they are similar to the value found by scanning–tunnelling
spectroscopy measurements in [13]. The prefactor of the resistivity follows the temperature
dependence ρ0 ∼ T m , where m changes from 9/2 at y = 0 to 5/2 at y = 0.03, 0.07 and
0.09. This corresponds to transformation of the wavefunction of the localized charge carriers
from a conventional hydrogen-like form ψ(r) ∼ exp(−r/a) to ψ(r) ∼ r−1 exp(−r/a), giving
evidence that doping with Fe increases the microscopic disorder by introducing an additional
fluctuating short-range potential.
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Appendix. Prefactor ρ0 and the characteristic temperature T0 of VRH conductivity

Shklovskii and Efros [12] have considered the hopping conductivity as a problem of percolation
over the Miller–Abrahams random resistivity network [21]. A transition from the site i with the
energy level εi < µ to the site j with ε j > µ is associated with a resistivity Ri j = R0

i j exp(ξi j )

between these sites, where

ξi j = 2ri j

a
+

εi j

kT
, (A.1)

εi j = ε j −εi, ri j is the distance between the sites and R0
i j is a prefactor. The onset of percolation

over the network corresponds to the percolation threshold ξc, which, for the Mott and SE VRH
mechanisms (at δ = 0), are given by the expressions ξc = (T0M/T )1/4 and ξc = (T0SE/T )1/2,
respectively. Generally, ξc can be found from the bonding condition

ξi j � ξ (A.2)
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where ξ is the bonding parameter. Then the net specific resistivity can be written as

ρ(T ) = ρ0(T ) exp ξc, (A.3)

where

ρ0(T ) = L0 R0
i j |ξi j = ξc. (A.4)

Here L0 = r0ξ
ν
c is the correlation radius of the critical subnet or the infinite cluster,

corresponding to ξ = ξc + 1, ν ≈ 1 is the critical exponent of the correlation length,
r0 = σaξc is the mean distance between the sites with energies inside the Mott optimum
stripe, σ ≈ 2 p(1 − p), R0

i j = kT/(e2γ 0
i j) and γ 0

i j is the prefactor of the hopping frequency
given by

γ 0
i j = E2

1εi j

πds5h̄4

(
2e2

3κa

)2 r2
i j

a2

[
1 +

(
εi ja

2h̄s

)2]−4( a

ri j

)q

. (A.5)

In equation (A.5) E1 is the deformation potential constant, d is the material density, q = 0 for
a localized state with the conventional hydrogen-like wavefunction ψ(r) ∼ exp(−r/a) and
q = 4 in the presence of microscopic structural defects providing a fluctuating short-range
potential changing ψ(r) to ψ(r) ∼ r−1 exp(−r/a) [12].

The maximum energy and distance compatible with equation (A.2) are

εmax (ξ) = kT ξ and rmax (ξ) = aξ/2. (A.6)

The concentration of the sites inside the interval µ − εmax(ξ) < ε < µ + εmax(ξ) can be
found by integration of the DOS (see figure 2) as N(ξ) = 2α3κ

3(kT ξ − δ)3/(3e6) and the
total number of the sites as n(ξ) = 4πr3

max N/3 = (πα3/9)(κ3/e6)(kT )3[ξ − δ/(kT )]3ξ3.
The percolation threshold satisfies the equation n(ξc) = nc, where nc is the critical value of
the onset of the percolation. Then, taking into account the relation βSE = [9nc/(πα3)]1/3 and
the second of equations (2), ξc can be presented in a form similar to those of the Mott and SE
VRH models:

ξc =
(

T0

T

)1/2

, (A.7)

where

T0 =
(

δ

2k
√

T
+

√
δ2

4k2T
+ T0SE

)2

. (A.8)

Substituting εi j = εmax(ξc) and ri j = rmax (ξc) in equation (A.5), we get

γ 0
i j |ξi j =ξc = E2

1kT ξc

πds5h̄4

(
2e2

3κa

)2
ξ2

c

4

[
1 +

(
kT ξca

2h̄s

)2]−4( 2

ξc

)q

, (A.9)

where the second term inside the square brackets is equal to 	 defined by equation (3).
Using equations (A.4) and (A.9) ρ0(T ) can be presented in the form

ρ0 = C0a3(T0 j/T )(q−1)p(1 + 	)4, (A.10)

where C0 = 9πσds5κ2h̄4/(2q E2
1e6). In the limiting cases of 	 � 1 and 	 � 1, ρ0(T ) is

given by the equation

ρ0(T ) = AT m, (A.11)

where for 	 � 1 the expression for A is evident and for 	 � 1 it can be written as

A = (C/2q)a11T (7+q)p
0 j (A.12)

with C = 9πσdκ2k8/(256E2
1e6s3h̄4). The values of m are collected in table 2.
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Finally, putting g(µ ± �) = g0 and εmax [ξc(Tv)] = �, where Tv is the temperature of the
onset of VRH conductivity, we obtain the following useful relations:

g0 = α3(κ
3/e6)(� − δ)2 (A.13)

and

� = k(T0Tv)
1/2. (A.14)
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