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Abstract. The study is devoted to an initial boundary value problem describing the process of
cleaning the bottomhole zone of an oil well with acid solution. It is assumed that the soil frame is
an elastic solid body and the pore space has double porosity. The physical process is described at
the microscopic level by the Stokes equations for the liquid component, the diffusion-convection
equation for the concentrations of acid and chemical reaction products, and the Lame equations
for the solid frame. Due to soil dissolution, the pore space has an unknown (free) boundary.
The lattice Boltzmann method (LBM), the immersed boundary method (IBM) and the finite
element method (FEM) are used for computer simulation. Finally, discretization of equations
and results of numerical solutions are presented.

1. Introduction
The bottomhole cleaning process (see figure 1) is very important to increase oil production.
Oil reservoirs are complex geologically heterogeneous objects. Heterogeneity means that the
medium properties change in space. The analysis of wells and cores shows that the geological
properties (porosity, permeability, etc.) of oil reservoirs are heterogeneous even within one
field. Often, insufficient consideration of heterogeneity at the planning stage becomes evident
too late, when the acid solution pumped into the soil through injection wells is far from the
intended place. In addition, the concentration of injected acid and injection modes play an
important role. Therefore, understanding the dynamics of fluids in heterogeneous porous media
and the mechanism of rock dissolution by acids is of fundamental importance for the effective
management of oil production. This can be achieved by creating a hydrodynamic simulator of
the bottomhole zone based on the corresponding mathematical model, which allows to optimize
the considered technological process.

There is a wide range of mathematical models describing the process of rock dissolution at
the macroscopic level (see [1–3], and references therein), where typical dimensions are meters
or tens of meters. At the macroscopic level, at each point of the continuous medium, there
is both a solid frame (rock) and a liquid in the pores of this frame. All such models are
based on the same principle. Fluid dynamics are usually described by the Darcy system of
filtration equations or some of its modification. Equations describing the migration of acid
and chemical reaction products are simply postulated and are modified diffusion-convection
equations for the corresponding concentrations. The main thing in these postulates is the form
of coefficients in equations, because the main mechanism of the physical process is concentrated
on the free boundary between the pore space and the solid frame. Moreover, during the process,
the geometry of the pore space changes. All these fundamentally important changes occur at
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Figure 1. Bottom hole cleaning process.

the microscopic level, corresponding to the average size of pores or cracks in rocks, while any of
the proposed macroscopic models operates on completely different scales.

The exact formulation of rock dissolution problem in one porosity medium for an absolutely
rigid solid body at the microscopic level was first presented in the monograph [4], but
mathematically rigorous results on the existence of any solution were absent there.

This paper deals with a more complex problem, where pores of size ε = l/L and cracks of
size δ = εν (0 < ν < 1) are taken into account in elastic soil. Here l is the characteristic pore
size and L is the characteristic size of the considered physical region.

Pores are modeled by the system of cylindrical channels of radius ε rp(x, t), 0 < rp < 1/2,
where its axes are parallel to the axes coordinates located at a distance ε from each other.
Cracks are modeled by sphere of radius δ rc(x, t), 0 < rc < 1/2, located at a distance δ from
each other. The motion of viscous fluid in an elastic periodic skeleton with double porosity was
previously considered by A.M. Meirmanov [5].

Here the physical process at the microscopic level is described by the laws of continuum
mechanics. These are the Stokes equations for the velocity vε and the pressure pε of a
viscous incompressible fluid in domain Ωε

f (t) with dimensionless viscosity κµ, Lame equations

for displacement wε of elastic solid frame Ωε
s(t), diffusion-convection equation for the acid

concentration cε and the conditions on a strong discontinuity (the required free boundary) Γε(t)
“elastic frame-pore space” [6]. There are no inertial terms in the Stokes and Lame equations,
as it has a sufficiently long duration in time (the fluid filtration rate is several meters per year)

The problem is supplemented by the boundary conditions on the free boundary separating the
pore space and the soil frame, which follow from the conservation laws of classical mechanics in
its integral form, boundary conditions at given boundaries, initial conditions, and an additional
condition on the free boundary

dεn = κ cε, κ = const > 0, (1)

following from the laws of theoretical chemistry [7] and allowing to define this boundary. Here
dεn is the velocity Γε(t) in the direction of unit normal n to the boundary Γε(t), cε is the
concentration of acid in the liquid, κ is a given constant.

2. Materials and methods
The physical process is considered in a bounded domain Ω (see figure 2) with piecewise Lipschitz
boundary S, S̄ = ∂Ω, S = S0 ∪ S1 ∪ S2, Si ∩ S0 = ∅, i = 1, 2, S1 ∩ S2 = ∅, ΩT = Ω × (0, T ).
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The domain Ω ε
f (t) ⊂ Ω describes the region occupied by liquid, and Ω ε

s (t) ⊂ Ω denotes elastic

frame (see figure 2). The boundary S0 is impermeable to fluid in the pore space, the boundary
S1 models the injection well.

S
0

S S

S

1 2

0

Ω
Ω
ε
f

Ω
ε
s

Г
ε

Figure 2. Domain under consideration and periodic pore space.

In dimensionless variables

x =
x′

L
, t =

t′

τ
, v =

τ v′

L
, p =

p

pa
,

the dynamics of acid solution in an unknown domain Ωε
f (t) (fluid domain) is described by the

system of differential equations
∇ · Tεf = 0, ∇ · vε = 0, (2)

Tεf = κµ σ(x,vε)− pε I,

∂cε

∂t
= ∇ · (κc∇cε − vε cε), (3)

∂cεi
∂t

+ vε · ∇cεi = ∇ · (κi∇cεi ), i = 1, ..., n, (4)

for the velocity vε and the pressure pε of continuous medium, pa is atmospheric pressure, cε is
the reagent concentration, I is a unit matrix.

In elastic frame Ω ε
s (t) the displacements of continuous medium wε are described by the Lame

equations
∇ · Tεs = 0, ∇ ·wε = 0. (5)

Tεs = κλD(x,wε)− pε I.

Let Γε(t) = ∂Ωε
f (t) ∩ ∂Ωε

s(t) be a free boundary, x0 ∈ Γε(t) and n(x0, t) is the unit normal

vector to the boundary Γε(t) at the point x0.
There are boundary condition (1) and conditions on the free boundary Γε(t)

vε(x0 + 0, t) = vε(x0 − 0, t), wε(x0 + 0, t) = wε(x0 − 0, t),

vεn(x0 ± 0, t) = vε(x0 ± 0, t) · n(x0, t) = dn(x0, t), (6)

Tεf · n = Tεs · n, (7)

(dεn − vεn) cε + κc
∂cε

∂n
= −β cε, (8)

(dεn − vεn) cεi + κi
∂cεi
∂n

= β βi c
ε, i = 1, ...,m, (9)
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∂cε

∂n
= ∇cε · n,

expressing the laws of conservation of mass [8].
In (2)–(9) vεn = v · n is the normal component of the fluid velocity vector v, n is the unit

normal vector to the free boundary Γε(t), outer with respect to the region Ωε
f (t), κc, κi, β and

βi (i = 1, ...,m) are given positive constants, vε and pε are the velocity and pressure in the
liquid, cεi are concentrations of chemical reactions products.

Condition (6) simplifies the boundary condition (8)

κc
∂cε

∂n
= −β cε. (10)

On the given boundaries, consisting of the injection well S1, the lateral boundary S2 and the
impermeable boundary S0, the following conditions are satisfied

vε = 0, x ∈ S0, t > 0, (11)

Tε · n = −pi n, i = 1, 2, x ∈ S1, t > 0, (12)

∂cε

∂n
= 0, x ∈ S0, t > 0, (13)

cε = c1 = const > 0, x ∈ S1, t > 0, (14)

∇cεi · n = 0, i = 1, ..., k x ∈ S1, t > 0, (15)

cεi = 0, i = 1, ...,m x ∈ S0, t > 0. (16)

In (8)–(16) n is the unit normal vector to the boundaries S0, S1, vn = vε · n.
The problem is completed by initial conditions

cε(x, 0) = c0(x), cεi (x, 0) = 0, i = 1, ...,m, (17)

r(x, 0) = r0(x), rp(x, 0) = rp,0(x), rc(x, 0) = rc,0(x), (18)

p0(x) = p0, x ∈ S0, t > 0, (19)

p0(x) = p1, x ∈ S1, t > 0, p0 ∈ C2(Ω). (20)

For simplicity, assume p0, p1 and c1 are given positive constants.
Note that the problem (1), (6)–(8), (10)–(14), (17) is solved independently of defining

functions ci (i = 1, 2, ...,m). The latter are determined after finding the functions {vε, pε, cε, r}.
All functions of the form Φ(x, t,y, z) are considered 1-periodic in variables y and z

respectively, where (x, t) ∈ Ω and

y, z ∈ Y =

(
−1

2
,
1

2

)3

⊂ R3, y = (y1, y2, y3), z = (z1, z2, z3), |yi|, |zi| <
1

2
.

The structure of the pore space Yf (rp) is given by the desired function rp(x, t), 0 < rp(x, t) <
1/2 as Y = Yf ∪γp∪Ys, Yf (rp) = Yf,1(rp)∪Yf,2(rp)∪Yf,3(rp), Yf,1(rp) = {y ∈ Y : y2

2 +y2
3 < r2

p},
Yf,2(rp) = {y ∈ Y : y2

1 + y2
3 < r2

p}, Yf,3(rp) = {y ∈ Y : y2
2 + y2

1 < r2
p} (see figure 3a).

The structure of the crack space is given by the required function rc(x, t), 0 < rc(x, t) < 1/2
as Zf (rc) = {z ∈ Z : z2

1 + z2
2 + z2

3 < r2
c}, Z = Zf (rc) ∪ γc ∪ Zs(rc) (see figure 3b).

With a fixed ε > 0 domain Ω ε
f (t) filled with fluid and elastic frame Ω ε

s (t) are determined by

the characteristic function φ(x, t,y, z) as follows

Ω ε
f (t) = Int{x ∈ Ω : φ ε(x, t) = 1} = Ω ε

f,p(t) ∪ Ω ε
f,c(t),
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Figure 3. a) unit cell of pore space; b) unit cell of crack; c) cracks and pores.

Ω ε
s (t) = Int{x ∈ Ω : φ ε(x, t) = 0},Ω ε

s (t) = Int{x ∈ Ω : φ ε(x, t) = 0},

φ ε(x, t) = 1−
(
1− φ εp (x, t)

)(
1− φ εc (x, t)

)
;

φ εp (x, t) = 1, x ∈ Ω ε
f,p(t), t > 0, φ εp (x, t) = 0, x ∈ Ω \ Ω ε

f,p(t), t > 0;

φ εc (x, t) = 1, x ∈ Ω ε
f,c(t), t > 0, φ εc (x, t) = 0, x ∈ Ω \ Ω ε

f,c(t), t > 0.

By d εn(x, t) we denote velocity of the free boundary in the direction of the normal n(x, t) to
the surface Γ ε(t) at the point x ∈ Γ ε(t).

3. Results and discussions
In this study, the lattice Boltzmann method (LBM) was used to solve the system of equations
(1)–(4). The method describes the behavior of particles collection and is based on the Boltzmann
equation, which describes the gas dynamics on the mesoscopic scale [9]

∂f

∂t
+ c · ∇xf = Θ(f), (21)

where f is the particle density at the point x of the time t, Θ is the collision operator that
determines the local distribution after the collision of particles.

Using LBM and equation (2) with respect to time, rewrite our equations for velocities as
follows

fi(x + ci∆t, t+ ∆t) = fi(x, t) + Θi(f), (22)
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where

Θi(f) = −∆t

τ
(fi − feqi ), (23)

feqi = wi

(
1 +

v · ci
c2
s

+
(v · ci)2

2c4
s

− v · v
2c2
s

)
, (24)

c2
s =

1

3
·
(

∆x

∆t

)
. (25)

In equations (22)–(25), ∆x and ∆t are steps in space and time, fi is the velocity distribution
function (see figure 4), feqi is the equilibrium distribution function, and τ is the dimensionless
relaxation time

τ =
1

2
+

αµ
c2
s∆t

, (26)

cs is the speed of sound, which for the model D2Q9 has the form (25).
Discrete velocities ci and the corresponding set of weight coefficients wi form a set of velocities.

There are different sets used in LBM.

�

���

�

� ��

 

!"

#

$

%

&'

�(

Figure 4. Model D2Q9 of discrete liquid flow rates.

Here 2 is the number of spatial dimensions (x and y), and 9 is the number of speeds

wi =


4/9, i = 0,

1/9, i = 1, 2, 3, 4,

1/36, i = 5, 6, 7, 8,

ci =



(0, 0), i = 0,(
cos
(
π(i−1)

2

)
, sin

(
π(i−1)

2

))
, i = 1, 2, 3, 4,

√
2
(

cos
(
π(i−5)

2 + π
4

)
, sin

(
π(i−5)

2 + π
4

))
, i = 5, 6, 7, 8.

Equation (22) has two parts: collision and distribution. The particles move with the velocity
ci to the neighboring node (x + ci∆t) in time (t+ ∆t). In this case, the collision operator acts
on them. Thus, the equation (22) can be split into two components
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a) collision
f∗i (x, t) = fi(x, t) + Θi(f);

b) distribution
fi(x + ci∆t, t+ ∆t) = f∗i (x, t).

After these two steps are completed, the distribution functions fi are calculated for the
current time step, and then the fluid velocity is found from

v =

8∑
i=0

fici. (27)

Similar transformations are carried out for displacements of the elastic soil frame described by
the system of equations (5).

The product flux of chemical reactions can be described using the convection-diffusion
equation [10]

∂Cj
∂t

+∇ · (−κc j∇Cj + vCj) = 0, (28)

where Cj is the concentration of the products of chemical reactions j, κc j is the dimensionless
diffusion coefficient determined for each reaction product.

It is worth to note the absence of the term responsible for the chemical reaction, in view of
the presence of the boundary conditions (8) and (9) at the “liquid-solid” interface.

The LB-analogue of the equation (28) will be as follows

gji (x + ci∆t, t+ ∆t) = gji (x, t) + Θj
i (g), (29)

where

Θj
i (g) = −∆t

τg

(
gji − g

eq,j
i

)
, (30)

geq,ji = wiC
j

(
1 +

v · ci
c2
s

)
. (31)

�
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�
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Figure 5. a) model D2Q9 of discrete mass transfer rates; b) concentration distribution at the
liquid-solid interface.

Solving equations (29)–(31), find the concentration in equation (28)

Cj =

4∑
i=0

gji . (32)
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Since the time scale of fluid flow is much smaller than other processes, the velocity reaches
steady state during the selected time step. The equilibrium distribution functions are calculated
using the equation (31), then the collision step (see figure 5a) is performed according to the
following equation

gj
∗

i (x, t) = gji (x, t) + Θj
i (g). (33)

The concentration distribution functions near the “liquid-solid” interface (see figure 5b) will
have the following form ∑

i

giei = κc
∂Cj

∂n
+ β Cj . (34)

Since the time scale of fluid flow is much smaller than other processes, the velocity reaches
steady state during the selected time step. The equilibrium distribution functions are calculated
using the equation (31), then the collision step is performed according to the following equation

gj
∗

i (x, t) = gji (x, t) + Θj
i (g). (35)

The geometry of elastic solid frame is updated using the rules detailed in [11]. Before
performing the propagation stage, to apply the rock dissolution effect, first update the
distribution function and then calculate the propagation stage

gji (x + Ci∆t, t+ ∆t) = gj
∗

i (x, t). (36)

After that, solving (32) obtain the concentrations of the products of chemical reactions and
proceed to the next time step.

As stated earlier, the multiple relaxation in time (MRT) scheme [12] is used to improve the
stability of calculations. This scheme uses the transformation matrix M . Thus, the collision
operator will be

Θi(f) = −
∑
k

(M−1SM)ik
(
fk(x, t)− feqk (x, t)

)
, (37)

where S = diag(0, se, sε, 0, sq, 0, sq, sv, sv) is a diagonal matrix.
The parameters sv and the relaxation time τ are related as

sv =
1

τ
.

To improve accuracy, it is extremely important to choose the correct relaxation parameter
values. Thus the establishment of so-called viscous relationship between sq and sv [13] is used
to reduce the nonphysical behavior of fluid near the free boundary in the course of numerical
solution

sq =
4(2− sv)
4 + 7sv

.

For se and sε
se = sε = sv.

3.1. Immersed boundary method (IBM)
The immersed boundary method is used to track the free boundary behavior. The main idea of
the IB method is that the flow field is influenced by the force distribution created by the free
boundary of the solid body. IBM uses independent meshes for fluid and solid sampling. The
fluid is discretized by a set of Eulerian points, which are in fact fixed regular Cartesian lattice
points, and the body boundary is discretized by a set of Lagrangian markers.
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In LBM, the fluid velocity v is calculated from the intermediate velocity v∗ and the correction
δv. With the IB method, the velocity corrections at the Lagrangian points are distributed over
the Euler points. If the Lagrangian points are on the free boundary Xb(sl, t), l = 1, 2, ...,m,
where m is the number of points, then the velocity corrections δv for the Euler points will be

δv(x, t) =

∫
Γ
δvb(Xb, t)δ(x−Xb(s, t))ds, (38)

δ(r) =

{
1
4(1 + cos

(
π|r|

2

)
) |r| ≤ 2

0 |r| > 2
(39)

where r is the distance between any points of the considered region x ∈ Ω and Xb(s, t) ∈ Γ.
Using equations (38) and (39) for two spatial variables, we get

δv(xij , t) =
∑
l

δvlb(X
l
b, t)δij(xij −Xl

b)∆sl, l = 1, 2, ...,m, (40)

∆sl is the arc length of the boundary element. Now the velocity at the Euler points can be
adjusted as follows

v(xij , t) = v∗(xij , t) + δv(xij , t). (41)

The last equation is the key point that unites the LB and IB methods.
According to the boundary condition (7), the velocities of the liquid at the boundary points

must be equal to the velocities of the solid boundary

vlb(X
l
b, t) =

∑
i,j

v(xij , t)Dij(xij −Xl
b)∆x∆y, (42)

where vlb are the local velocities of the free boundary.
When simulating the interaction of a fluid and an elastic body, it is necessary to know the

velocities of all points of the free boundary. For this, we used the finite element method (FEM).
The main condition on the “fluid-solid” interface is the following condition

(κµ σ(x,vε)− pε I) · n = (κλ σ(x,wε)− pε I) · n. (43)

The use of LBM and FEM for fluid-structure interaction was carried out in a checkerboard
pattern. In other words, the LBM was applied to the liquid component using the velocity
obtained at the interface using FEM. This cycle continued until the condition (43) followed.
The return path was applied to the points of the free boundary. When the distribution of
particles reaches the boundary point of the lattice, then they are scattered back to the node
where they came from.

To preserve the continuity of the velocities at the “fluid-solid” interface, the local distribution
of particles fi was additionally modified [14]. If v−x and v−y be the components of the difference
between velocities of an elastic body and a fluid along the axes x and y on the free boundary,
then

f2 ← f2 +
∆vsx

3
,

f3 ← f3 +
∆vsy

3
,

f4 ← f4 −
∆vsx

3
,
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f5 ← f5 −
∆vsy

3

f6 ← f6 +
∆vsx
12

+
∆vsy
12

, f7 ← f7 −
∆vsx
12

+
∆vsy
12

f8 ← f8 −
∆vsx
12
−

∆vsy
12

, f9 ← f9 +
∆vsx
12
−

∆vsy
12

This is followed by a finite element analysis.

3.2. Numerical results
By solving the system of equations (1)–(19) distribution of chemical reaction products and
reagent concentration at different moments of dimensionless time were obtained.

Thus, in figure 6 you can see the change in the concentration of chemical reaction products
at different t=[4.2 ∗ 103; 1.6 ∗ 104; 2.6 ∗ 104; 1.1 ∗ 105].
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Figure 6. Chemical reaction products at different dimensionless time moments.

Similar results are observed when simulating the propagation of an acid solution. Figure 7
shows that the elastic soil frame dissolves completely over time t=[4.2∗103; 1.6∗104; 2.6∗104; 1.1∗
105].

Let us note the importance of coefficient β in the condition on the free boundary. It affects
the dissolution rate of elastic solid frame. Figure 8 shows the concentration field of the reagent
with β = [1; 10] at fixed time moment t=2.7 ∗ 105.
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Figure 7. Reagent concentration at different dimensionless time moments.
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Figure 8. Reagent concentration for different values of β at fixed dimensionless time moment.

Finally, figure 9 shows the position of the free boundary at fixed time moment t=1∗106. The
gray borders denote the geometry of elastic soil frame before acid exposure.



AMCSM 2020
Journal of Physics: Conference Series 1902 (2021) 012108

IOP Publishing
doi:10.1088/1742-6596/1902/1/012108

12

X

Y

0.5

0.5

1.0

0

1.00

Figure 9. The free boundary position at fixed time moment.
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Conclusion
In this study, a correct mathematical model for cleaning the bottomhole zone of oil wells was
derived based on the fundamental laws of continuum mechanics and theoretical chemistry, which
accurately describe the physical processes under consideration at the microscopic level (on the
scale of pores and cracks). The problem of acid treatment of a non-periodic elastic solid frame
with double porosity was considered. Numerical experiments of the problem are carried out.
The influence of acid concentration in the injection well and coefficients in the condition on
the common boundary “liquid-elastic solid body” is investigated. On each temporarily layer,
the border was adjusted twice. First, as a result of fluid action on an elastic body, then as a
result of acid dissolution. As a result, an increase in the products of the chemical reaction can
be noted over time at a given value of the concentration of the reagent at the inlet boundary.
Also revealed the influence of the coefficient β in the condition on the free boundary. With its
increase, the dissolution process proceeds faster.
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