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ON APPROXIMATE SOLUTION OF CERTAIN EQUATIONS
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Abstract. In this paper, we consider problems of discrete approximation of special integral operators

with the Calderon–Zygmund kernel. We introduce discrete spaces and bounded discrete operators

acting in these spaces; then we use these operators for the search for approximate solutions of the

corresponding equations. We state theorems on the solvability of equations with discrete operators,

compare integral operators with their discrete analogs, and obtain estimates of errors of approximate

solutions.

Keywords and phrases: Calderon–Zygmund kernel, discrete operator, symbol, approximation mea-

sure, approximate solution.

AMS Subject Classification: 42B10, 45G05, 65R20

1. Introduction. Calderon–Zygmund operators and the corresponding multidimensional singular

equations were studied by many authors in various functional spaces (see, e.g., [6]). Such equations
often appear in various problems of mathematical physics (see [2, 5, 6]). However, as a rule, only one-
dimensional singular integral equations are considered in theoretical studies (see [2, 4, 5]); in certain

cases, multidimensional compact operators are considered (see [7]). In recent years, the theory of C∗-
algebras (see, e.g., [3]) is used for the theoretical justification of approximate (projection) methods,
but errors were not estimated in these studies.

This paper provides an overview of the author’s results [8–19] related to the justification of the
discretization scheme of the simplest types of such equations and finding an approximate solution and
error estimate for discrete solutions.

2. Calderon–Zygmund operators and their discrete analogs. A multidimensional singular

integral equation in the space R
m is the equation of the form

a(x)u(x) +

∫

Rm

K(x, x− y)u(y)dy = v(x), x ∈ R
m, (1)

where the kernel of K(x, y) is the so-called Calderon–Zygmund kernel (see [6]), and the integral in (1)
is meant in the sense of the principal value∫

Rm

K(x, x− y)u(y)dy = lim
ε→0
N→∞

∫

ε<|x−y|<N

K(x, x− y)u(y)dy.

Definition 2.1. A function K(x, y) defined on R
m× (Rm \{0}) is called a Calderon–Zygmund kernel

if it satisfies the following conditions:

(1) K(x, tx) = t−mK(x, y) for all x ∈ R
m and all t > 0;

(2)

∫

Sm−1

K(x, ω) = 0 for all x ∈ R
m;

(3) |K(x, y)| ≤ C, K(x, ω) is differentiable with respect to Sm−1 for all x ∈ R
m, where Sm−1 is the

unit sphere in the m-dimensional space, and C is a constant.
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We consider the simplest equation (1) in the case where the kernel K(x, y) is dependent of the

pole x, i.e., has the form

au(x) +

∫

Rm

K(x− y)u(y)dy = v(x), x ∈ R
m. (2)

One would think that Eq. (2) can be solved by applying the Fourier transform, but this is not so.
From the computational point of view, discrete (and also finite) sets of points imitating (simulating)

Eq. (2) are needed. Hence we first replace Eq. (2) by a discrete system and then consider its possible
finite approximations. Some preliminary considerations related to this were described in [2, 4, 5, 7].

2.1. Discrete analogs. In the m-dimensional space Rm, we introduce the discrete grid hZm on which
the functions ud(x̃) of a discrete argument x̃ ∈ hZm are defined; we set K(0) = 0 and denote by Kd

the restriction of the kernel K(x) to hZm.

For the multidimensional singular integral operator

(Ku)(x) =

∫

Rm

K(x− y)u(y)dy

we consider the following discrete analog:

(Kdud)(x) =
∑

ỹ∈hZm

Kd(x̃− ỹ)ud(ỹ)h
m, x̃ ∈ hZm. (3)

The sum of the series (3) means the limit of partial sums

lim
N→∞

∑
ỹ∈hZm∩QN

Kd(x̃− ỹ)ud(ỹ)h
m,

where

QN =

{
x ∈ R

m : max
1≤k≤m

|xk| ≤ N

}
.

The symbol �2h denotes the Hilbert space L2(hZ
m) of functions of a discrete argument with the

inner product

(ud, vd) =
∑

x̃∈hZm

ud(x̃)vd(x̃)h
m

and the corresponding norm

‖ud‖�2h =

( ∑
x̃∈hZm

|ud(x̃)|2hm
)1/2

.

It is well known that under the conditions stated for the kernel, the operator K acts boundedly in
the space L2(R

m) (see [6]). Taking this into account, we can easily prove the following theorem.

Theorem 2.1. The estimate ∥∥Kdud
∥∥
�2h

≤ c‖ud‖�2h
is valid, where the constant c is independent of h.

Thus, the family of discrete operators (3) is uniformly bounded on h.
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2.2. Comparison of symbols.

Definition 2.2. The symbol of an operator K is the Fourier transform of the kernel K(x) in the sense

of the principal value:

σ(ξ) = lim
ε→0
N→∞

∫

ε<|x|<N

K(x)eiξ·xdx.

Applying the Fourier transform to Eq. (2), we obtain the equation

(a+ σ(ξ))ũ(ξ) = ṽ(ξ);

the necessary and sufficient condition of its solvability in the space L2(R
m) has the following form

(see [6]):

inf |a+ σ(ξ)| > 0, ξ ∈ R
m.

The function a+ σ(ξ) is called the symbol of the operator aI +K; here I is the identity operator.
We associate the symbol σd(ξ), ξ ∈ [−πh−1, πh−1]m, defined by the multidimensional Fourier series

σd(ξ) =
∑

x̃∈hZm

K(x̃)e−ix̃·ξhm,

with the discrete operator Kd. Its partial sums are taken over discrete cubes QN ∩ hZm; they are
periodic functions in R

m with the main cube of periods [−πh−1, πh−1]m.
Similarly, the function a + σd(ξ), ξ ∈ [−πh−1, πh−1]m is called the symbol of the discrete singular

equation

(aI +Kd)ud = vd. (4)

We say that a symbol is elliptic if it does not vanish anywhere.
It was established (see [10, 15, 16]) that the sets of the values of the symbols σ(ξ) and σd(ξ)

coincide; this immediately implies that Eq. (2) and its discrete analog (4) are solvable or insolvable

simultaneously. Thus, there is a solution of the infinite system of linear algebraic equations (4); it is
natural to expect that for small h > 0 it will be close to the solution of the original equation (2).

2.3. Comparison of operators. Let us denote by Ph the operator of restriction to the grid hZm, i.e.,

the operator assigning to each function defined on R
m the discrete set of its values at the nodes of the

grid hZm.
Following [12, 16], we state the following definition.

Definition 2.3. A measure of approximation of the operators K and Kd in a linear normed space X
of functions defined on R

m is the operator norm

‖PhK −KdPh‖Xd
,

where Xd is the normed space of functions defined on the grid hZm with the norm induced by the

norm of the space X.

We use the space Ch along with the space �2h as the space Xd, which is the function space ud of the
discrete argument x̃ ∈ hZm with the norm

‖ud‖Ch
= max

x̃∈hZm
|ud(x̃)|.

In other words, the space Ch is the space of restrictions of functions u ∈ C(Rm) to the nodes of the

grid hZm. Here it is worth noting that the operator K is unbounded in the space C(Rm); however,
it is bounded in the space L2(R

m). It is well known that if the right-hand side of Eq. (2) possesses
a certain smoothness (for example, satisfies the Hölder condition), then the solution of Eq. (2) (if it

exists in L2(R
m)) possesses the same smoothness (see [6]).
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We define the discrete space Ch(α, β) as the space of functions of the discrete argument x̃ ∈ hZm

with the finite norm

‖ud‖Ch(α,β) = ‖ud‖Ch
+ sup

x̃,ỹ∈hZm

|x̃− ỹ|α
(max{1 + |x̃|, 1 + |ỹ|})β ,

satisfying the conditions

|ud(x̃)| ≤ c

(1 + |x̃|)β−α
, |ud(x̃)− ud(ỹ)| ≤ c

|x̃− ỹ|α
(max{1 + |x̃|, 1 + |ỹ|})β

for all x̃, ỹ ∈ R
n, α, β > 0, 0 < α < 1.

The continual analog of these spaces is the space Hα
β (R

m) of continuous functions on R
m satisfying

the Hölder conditions with a constant 0 < α < 1 and the weight (1 + |x|)β (see [1]). In particular,

results of [1] imply that the operator K is a linear bounded operator K : Hα
β (R

m) → Hα
β (R

m) under
the condition m < β < α+m.

For the spaces Ch(α, β), the following statement holds.

Theorem 2.2. The estimate

‖Kdud‖Ch(α,β) ≤ c‖ud‖Ch(α,β)

holds, where m < β < α+m and the constant c is independent of h.

We provide an estimate of the approximation measure of the operatorsK andKd in the space Ch(α, β).
This allows us to estimate the error of the solution when replacing the continual operator K with its
discrete analog Kd.

Theorem 2.3. For the approximation measure of the operators K and Kd, the estimate∥∥PhK −KdPh

∥∥
Ch(α,β)

≤ chα̃

holds, where the constant c is independent of h, α̃ < α, and β̃ > β.

3. Analog of Eq. (2) in a half-space. An analog of Eq. (2) in a half-space is the equation

au(x) +

∫

R
m
+

K(x− y)u(y)dy = v(x), x ∈ R
m
+ , (5)

in L2(R
m
+ ), Rm

+ = {x ∈ R
m : x = (x′, xm), xm > 0}.

This equation is well studied. Using the Fourier transform, we can reduce it to the classical boundary-

value Riemann problem for the upper and lower complex half-plane with the coefficient σ(ξ′, ξm), where
ξ is the Fourier dual variable and ξ′ = (ξ1, . . . , ξm−1) plays the role of a parameter.

It is well known that in the case of discrete convolutions, it is possible to use a similar scheme with

the discrete Fourier transform

(Fdud)(ξ) =
1

(2π)m

∑
x̃∈hZm

ud(x̃)e
−ix̃·ξhm ≡ ũd(ξ), ξ ∈ [−h−1π, h−1π]m,

which leads us to a periodic Riemann problem with the coefficient σd(ξ
′, ξm) and the parameter ξ′

in a band. The solvability of both problems is determined by the topological indexes σ and σd with

respect to the variable ξm.
The topological index of this boundary-value Riemann problem in the simplest case is the increment

of the argument of the function σ(·, ξm) when ξm changes from −∞ to +∞; it is independent of ξ′

(m ≥ 3). The same is valid for the discrete equation (4) in the discrete half-space

aud(x̃) +
∑

ỹ∈hZm
+

K(x̃− ỹ)ud(ỹ)h
m = vd(x̃), x̃ ∈ hZm

+ , (6)
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and its solvability is determined by the increment of the argument σd(·, ξm) when ξm changes in the

interval [−πh−1, πh−1]. There is a connection between these two symbols (see below).

3.1. Periodic Riemann problem. Here we explain the appearance of the periodic Riemann problem

and denote its connections with Eq. (6).
Let us consider the one-dimensional case, h = 1. If we denote projectors onto Z± by P±, then it is

easy to calculate that

(FdP±ud)(ξ) = 1/2ũd(ξ)∓ i/2 lim
s→0±

π∫

−π

cot
ζ − τ

2
ũd(τ)dτ, ζ = ξ + is.

It is worth noting that such singular integrals are obtained by summing Fourier series with the help of

the Dirichlet kernel with the subsequent passage to the limit in partial sums; this is a periodic analog
of the Hilbert transform

(Hu)(x) = v.p.

π∫

−π

cot
x− t

2
u(t)dt.

Let us consider the function

Φ(ζ) =
1

4πi

π∫

−π

cot
ζ − t

2
φ(t)dt

and assume that φ(t) satisfies the Hölder condition on [−π, π]:∣∣φ(t1)− φ(t2)
∣∣ ≤ c|t1 − t2|α

for all t1, t2 ∈ [−π, π], 0 < α ≤ 1, φ(−π) = φ(π). The limit values of this function on the line can be

expressed by a singular integral H.

Theorem 3.1. The following formulas hold :

Φ±(ξ) = ±φ(t)

2
+

1

2πi
v.p.

π∫

−π

cot
ξ − t

2
φ(t)dt,

where Φ±(ξ) are the limit values of Φ±(ζ) as s → ±0.

These formulas (the Sokhotski—Plemelj formulas) lead to the following formulation of the periodic
boundary-value Riemann problem: find a pair of functions Φ±(z) that are analytic in the half-bands

Π± =
{
z ∈ C : z = t+ is, t ∈ [−π, π], ±s > 0

}
,

whose boundary values as s → 0± are related by the linear relation

Φ+(t) = G(t)Φ−(t) + g(t), t ∈ [−π, π],

where G(t) and g(t) are given functions on [−π, π].

If we assume that G(t) ∈ C[−π, π] and G(−π) = G(π), then the index of the function G on the
interval [−π, π] is defined as the increment argG(t) divided by 2π when t changes from −π to π. This
integer is called the index of problem and is denoted by κ ≡ IndG(t).

Theorem 3.2. If G(t) satisfies the Hölder condition and κ = 0, then the periodic Riemann problem

has a unique solution Φ±(t) ∈ L2[−π, π], which is constructed by using the function Φ(ζ).

12



3.2. Discrete half-space. By a similar reasoning on a multidimensional grid with a step h in a half-

space and using the operator (see [10, 15])

(Hper
ξ′ ud)(ξm) =

1

2πi

πh−1∫

−πh−1

u(t) cot
h(t− ξm)

2
dt,

we arrive at the periodic Riemann problem with the parameter ξ′. The index of this problem is

κd =

+∞∫

−∞
d arg σd(·, ξm).

Since the Calderon–Zygmund kernel is very specific, we conclude that under additional condition
σ(0, . . . , 0,−1) = σ(0, . . . , 0,+1) on the character of the operator, the indices of the corresponding

boundary-value problems are the same (see [10, 15]); this immediately implies the following statement.

Theorem 3.3. Equations (??) and (6) are simultaneously solvable or insolvable in the spaces L2(R
m
+ )

and L2(hZ
m
+ ) for all h > 0.

3.3. Discrete approximations and comparison. Let x′ = (x1, . . . , xm−1), x = (x′, xm); we consider a
weight function of the form

ω(x̃) = (1 + |x̃|)α
(

x̃m
1 + x̃m

)β

.

Let us introduce the discrete space Hα,β
γ (hZm

+ ) as the space of functions ud(x̃) defined on hZm
+ (Zm

+ =
Z
m ∩R

m
+ ) with the norm

‖ud‖α,β,γ ≡ ‖ω · ud‖γ ,
0 < γ < 1, 0 < α+ γ < m, γ < β < γ + 1, where

‖ud‖γ ≡ max
x̃∈hZm

+

∣∣ud(x̃)∣∣+ max
x̃,ỹ∈hZm

+

∣∣ud(x̃)− ud(ỹ)
∣∣

|x̃− ỹ|γ .

Note that this space also has a continual analog Hα,β
γ (Rm

+ ) (see [1]).

Theorem 3.4. The operator Kd is a linear bounded operator in the space Hα,β
γ (hZm

+ ), and its norm
is independent of h.

We introduce the restriction operator

lh : Hα,β
γ (Rm

+ ) −→ Hα,β
γ (hZm

+ );

then for a function u ∈ Hα,β
γ (Rm

+ ) we have the following result.

Theorem 3.5. ∣∣∣[(lhK −Kh
d lh)u

]
(x̃)

∣∣∣ ≤ chγ ln
1

h
;

moreover, the constant is independent of h.

If we assume, as above, that σ(0, . . . , 0,−1) = σ(0, . . . , 0,+1), then we obtain a result similar to
Theorem 3.3.

Theorem 3.6. The operators K and Kd are simultaneously invertible or not in the spaces Hα,β
γ (Rm

+ )

and Hα,β
γ (hZm

+ ), respectively.

The last considerations imply that such discrete operators are useful for constructing convenient

finite-dimensional approximations.
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4. Approximate solutions and error estimates.

4.1. Cyclic convolution. We introduce a special discrete periodic kernel Kd,N (x̃) as follows. We take

the restriction of the discrete kernel Kd(x̃) to the discrete cube QN ∩ hZm ≡ Qd
N and periodically

extend it to all hZm. Next, we consider discrete periodic functions ud,N with a discrete cube of periods

Qd
N and define a cyclic convolution for a pair of such functions ud,N and vd,N by the formula

(ud,N ∗ vd,N )(x̃) =
∑
ỹ∈Qd

N

ud,N (x̃− ỹ)vd,N (ỹ)hm.

Then we define the finite Fourier transform

(Fd,Nud,N )(ξ̃) =
∑

x̃∈Qd
N

ud,N (x̃)eix̃·ξ̃hm, ξ̃ ∈ Rd
N ,

where Rd
N = [−h−1π, h−1π]m ∩Qd

N ; here ξ̃ is a discrete variable. Now we introduce the operator

Kd,Nud,N (x̃) =
∑
ỹ∈Qd

N

Kd,N (x̃− ỹ)ud,N (ỹ)hm

on periodic discrete functions ud,N and finite Fourier transform for its kernel

σd,N (ξ̃) =
∑

x̃∈Qd
N

Kd,N (x̃)eix̃·ξ̃hm, ξ̃ ∈ Rd
N .

Definition 4.1. The function σd,N (ξ̃), ξ̃ ∈ Rd
N , is called the symbol of the operator Kd,N . A symbol

is said to be elliptic if σd,N (ξ̃) 
= 0 for all ξ̃ ∈ Rd
N .

Theorem 4.1. Let σd(ξ) be an elliptic symbol. Then for sufficiently large N , the symbol σd,N (ξ̃) is
also elliptic.

As above, the elliptic symbol σd,N (ξ̃) corresponds to the invertible operatorKd,N in the space L2(Q
d
N ).

4.2. Approximation measure. Let A : B → B be a linear bounded operator acting in a Banach space
B, BN ⊂ B be a finite-dimensional subspace, PN : B → BN be a projector, and AN : BN → BN be a
linear finite-dimensional operator (see [17, 18]).

Definition 4.2. An approximation measure of the operators A and AN is the operator norm

∥∥PNA−ANPN

∥∥
B→BN

.

Obtaining such an operator estimate is a difficult problem, so we present a weaker version of the
estimate on a particular element of the space Ch(α, β). Note that under our assumptions, Ch(α, β) ⊂
L2(hZ

m).

Theorem 4.2. For the operators Kd and Kd,N we have the estimate

∥∥(PNKd −Kd,NPN )ud
∥∥
L2(Qd

N )
≤ CNm+2(α−β)

for arbitrary ud ∈ Ch(α, β), where β > α+m/2.
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4.3. Comparison of solutions. Here we consider the equation

(aId,N +Kd,N )ud,N = PNvd (7)

instead of the equation

(aId +Kd)ud = vd (8)

and compare solutions of these two equations.

Assume that the operator aId +Kd is invertible in the space L2(hZ
m).

Theorem 4.3. If vd ∈ Ch(α, β), β > α +m/2, ud is a solution of Eq. (8), and ud,N is a solution of

Eq. (7), then the estimate ∥∥ud − ud,N
∥∥
L2(hZm)

≤ CNm+2(α−β)

holds, where C is a constant independent of N .

4.4. Relationship between N , h, and the location of x̃. Consider the original equation

(aI +K)u = v (9)

in the space L2(R
m) and the equation

(aId +Kd)ud = Pdv ≡ vd, (10)

where Pd is the projection operator, which, given a continuous function v defined on R
m, transfers the

function of a discrete argument to Z
m. It is natural to compare the solutions of the whole triple of

Eqs. (9), (10), and (7). The connection between the solutions (7) and (10) is described in Theorem 4.3.

Theorem 4.4. If v ∈ Hα
β (R

m), 0 < α < 1, m < β < α +m, u is a solution of Eq. (9), and ud is a

solution of Eq. (10), then the following estimate holds:

∣∣u(x̃)− ud(x̃)
∣∣ ≤ chα ln

1

h
∀x̃ ∈ hZm,

where the constant c in independent of h.

We denote by r(x̃) the distance between x̃ ∈ hZm ∩QN and ∂QN .

Theorem 4.5. Let vd ∈ Ch(α, β), ud be a solution of Eq. (10), and ud,N be a solution of Eq. (7).
Then for all x̃ ∈ Z

m ∩QN , the following estimate holds:

∣∣ud(x̃)− ud,N (x̃)
∣∣ ≤ c1

{
Nα−β ln

(
1 + c2N/h

)
, if r(x̃) ∼ N−1,

Nα−β otherwise;

here c1 and c2 are constants independent of h and N .

Of course, not all available results are presented in this paper; in particular, estimates of the error of

the discrete solution in the semi-space are not presented. In addition, there are some results related to
the Fredholm property of more general discrete operators, which allow us to hope for a generalization
of the available results into wider classes of operators and equations.
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