

УДК 517.988.6

ТОПОЛОГИЧЕСКАЯ СТЕПЕНЬ МНОГОЗНАЧНЫХ ВОЗМУЩЕНИЙ ПЛОТНО ОПРЕДЕЛЕННЫХ ОПЕРАТОРОВ МОНОТОННОГО ТИПА И НЕКОТОРЫЕ ЕЕ ПРИЛОЖЕНИЯ $^{5)}$

Е.С. Барановский 6)

Воронежский государственный университет, Университетская пл., 1, Воронеж, 394006, Россия, e-mail: bes220@rambler.ru

Аннотация. В работе вводится понятие топологической степени многозначных возмущений плотно определенных отображений типа (S_+) . Изучаются основные свойства данной топологической характеристики. Построенная степень применяется при исследовании задачи управления с обратной связью для одного класса нелинейных уравнений эллиптического типа.

Ключевые слова: топологическая степень, монотонные отображения, плотно определенные отображения типа (S_+) , многозначные отображения, асферичные множества, управление с обратной связью, нелинейные эллиптические уравнения.

Введение

Как известно, при изучении многих задач оптимального управления, задач теории дифференциальных уравнений и включений, вариационных неравенств естественно возникают уравнения с многозначными операторами (см., например, [1]). Удобным средством исследования таких уравнений является использование топологических характеристик типа степени многозначных возмущений различных классов однозначных операторов. В [2, 3] была построена теория степени многозначных возмущений (S_+) -отображений. На основе этой теории удалось изучить ряд задач управления с обратной связью в системах, описываемых нелинейными уравнениями в частных производных [3]–[5].

В предлагаемой статье понятие степени распространяется на более широкий, чем отмеченный выше, класс многозначных отображений, а именно класс многозначных возмущений плотно определенных $(S_+)_E$ -отображений. Необходимость такого расширения обусловлена тем, что в приложениях возникают ситуации, когда вместо операторов, заданных на всем пространстве, приходится рассматривать операторы, определенные лишь на всюду плотном множестве. Так происходит, например, при изучении краевых задач для квазилинейных эллиптических и параболических уравнений с «сильно растущими» коэффициентами (см. [6, 7]).

⁵Работа выполнена при финансовой поддержке РФФИ.

⁶Барановский Евгений Сергеевич – кандидат физ.-мат. наук, научный сотрудник НИИ математики Воронежского государственного университета.

 $^{^{7}}$ Напомним, что отображения класса (S_{+}) представляют собой разновидность операторов монотонного типа и естественно возникают при изучении нелинейных краевых задач [12].

Отметим, что теория степени плотно определенных отображений типа (S_+) была предложена А. Картсатосом и И.В. Скрыпником [6]. Приложения этой теории и некоторые ее обобщения рассматриваются в [7, 8].

В данной работе предложена конструкция топологической степени отображений вида A-G, где A – однозначный плотно определенный оператор, удовлетворяющий условию $(S_+)_E$, $G=\varphi\circ\Sigma$, φ – однозначный оператор, Σ – компактное многозначное отображение с асферичными образами. Степень определяется по следующей схеме. Сначала отображение A-G аппроксимируется конечномерными проекциями A_k-G_k , $k=1,2\ldots$, и определяется степень многозначных отображений A_k-G_k . Затем устанавливается стабилизация полученных степеней при $k\to\infty$ и предельное значение объявляется степенью исходного отображения. Введенная таким образом характеристика обладает всеми стандартными свойствами топологической степени. В работе рассматривается свойство гомотопической инвариантности степени, а также доказывается аналог «основной теоремы» теории степени. В заключение статьи построенная степень применяется при исследовании задачи управления с обратной связью для одного класса нелинейных уравнений эллиптического типа.

1. Предварительные сведения из теории многозначных отображений

Пусть $\mathfrak{X}, \mathfrak{Z}$ – метрические пространства. Для $M \subset \mathfrak{X}, \varepsilon > 0$ обозначим $O_{\varepsilon}(M) = \{x \in \mathfrak{X} : \rho(x,M) < \varepsilon\}$, где $\rho(x,M)$ – расстояние от x до множества M.

Пусть Σ : $\mathfrak{X} \to \mathfrak{Z}$ – многозначное отображение (мультиотображение).

Определение 1. Непрерывное отображение $\sigma_{\varepsilon} \colon \mathfrak{X} \to \mathfrak{Z}, \, \varepsilon > 0$, называется ε -аппроксимацией Σ , если для каждого $x \in \mathfrak{X}$ существует $x' \in O_{\varepsilon}(x)$ такое, что $\sigma_{\varepsilon}(x) \in O_{\varepsilon}(\Sigma(x'))$.

Совокупность всех ε -аппроксимаций Σ обозначим символом $a(\Sigma, \varepsilon)$.

Лемма 1 (см. [9]). Пусть $\mathfrak{X},\mathfrak{X}',\mathfrak{Z}$ – метрические пространства, $f\colon \mathfrak{X} \to \mathfrak{X}', \varphi\colon \mathfrak{Z} \to \mathfrak{X}'$ – непрерывные отображения. Пусть $\Sigma\colon \mathfrak{X} \to \mathfrak{Z}$ – полунепрерывное сверху многозначное отображение такое, что для любого $x\in \mathfrak{X}$ множество $\Sigma(x)$ компактно. Пусть K – компактное подмножество \mathfrak{X} такое, что

$$f(x) \notin \varphi \circ \Sigma(x), \ x \in K.$$

Тогда, если $\varepsilon > 0$ достаточно мало и $\sigma_{\varepsilon} \in a(\Sigma, \varepsilon)$, то

$$f(x) \neq \varphi \circ \sigma_{\varepsilon}(x), \ x \in K.$$

Приведем теперь определение используемого в дальнейшем класса многозначных отображений. Но сначала напомним некоторые понятия и факты.

Определение 2 (см. [10]). Непустое компактное подмножество M метрического пространства $\mathbb Z$ называется асферичным, если для любого $\varepsilon > 0$ найдется δ , $0 < \delta < \varepsilon$, такое, что для каждого $n = 0, 1, \dots$ любое непрерывное отображение $g: S^n \to O_{\delta}(M)$

может быть продолжено до непрерывного отображения $\tilde{g}: B^{n+1} \to O_{\varepsilon}(M)$, где S^n , B^{n+1} – единичные сфера п шар в \mathbb{R}^{n+1} .

Определение 3 (см. [1]). Мультиотображение $\Sigma: \mathfrak{X} \to \mathfrak{Z}$ называется полунепрерывным сверху в точке $x_0 \in \mathfrak{X}$, если для любого открытого множества $V \subset \mathfrak{Z}$ такого, что $\Sigma(x_0) \subset V$, найдется U_{x_0} – окрестность точки x_0 такая, что $\Sigma(U_{x_0}) \subset V$. Мультпотображение Σ называется полунепрерывным сверху, если оно полунепрерывно сверху в каждой точке $x \in \mathfrak{X}$.

Определение 4 (см. [10]). Многозначное отображение $\Sigma: \mathfrak{X} \to \mathfrak{Z}$ называется J- мультпотображением ($\Sigma \in J(\mathfrak{X}, \mathfrak{Z})$), если оно полунепрерывно сверху и для любого $x \in \mathfrak{X}$ множество $\Sigma(x)$ является асферичным.

Чтобы отметить насколько широк класс J-мультиотображений, напомним [10], что примерами асферичных множеств в линейном нормированном пространстве служат компактные выпуклые или стягиваемые множества, R_{δ} - множества.

Следующее аппроксимационное свойство J-мультиотображений, восходящее к работам А.Д. Мышкиса, доказано в [11].

Лемма 2. Пусть \mathfrak{X} – локально стягиваемый конечномерный компакт, $\Sigma \in J(\mathfrak{X}, \mathfrak{Z})$. Тогда

- i) мультпотображение Σ аппроксимируемо, то есть для любого $\varepsilon > 0$ найдется $\sigma_{\varepsilon} \in a(\Sigma, \varepsilon)$;
- ii) для любого $\varepsilon>0$ найдется $\delta_0>0$ такое, что для каждого δ $(0<\delta<\delta_0)$ п для любых двух δ -аппроксимаций $\sigma_\delta,\ \sigma'_\delta\in a(\Sigma,\delta)$ найдется непрерывное отображение $\tilde{\sigma}\colon \mathfrak{X}\times [0,1]\to \mathfrak{Z}$ такое, что

$$ilde{\sigma}(\cdot,0)=\sigma_{\delta}, \quad ilde{\sigma}(\cdot,1)=\sigma_{\delta}'$$

и $\tilde{\sigma}(\cdot,\lambda) \in a(\Sigma,\varepsilon)$ для каждого $\lambda \in [0,1]$.

Пусть \mathfrak{X} , \mathfrak{X}' , \mathfrak{Z} – метрические пространства. Символом $CJ(\mathfrak{X},\mathfrak{X}')$ будем обозначать совокупность всех мультиотображений $G\colon \mathfrak{X} \to \mathfrak{X}'$ вида $G = \varphi \circ \Sigma$, где $\Sigma \in J(\mathfrak{X},\mathfrak{Z})$, $\varphi\colon \mathfrak{Z} \to \mathfrak{X}'$ – непрерывное однозначное отображение.

2. Степень многозначных возмущений $(S_+)_E$ -отображений

Пусть X — вещественное сепарабельное рефлексивное банахово пространство, X^* — его сопряженное. Обозначим сильную и слабую сходимости соответственно через \to и \to . Для элементов $x \in X$ и $q \in X^*$ через $\langle q, x \rangle$ обозначим действие функционала q на элементе x.

Зафиксируем $\{v_m\}_{m=1}^\infty$ — полную систему элементов в пространстве X. Предположим, что при каждом k элементы v_1,\ldots,v_k линейно независимы. Обозначим через E_k линейную оболочку элементов v_1,\ldots,v_k . Символом E обозначим $\bigcup_{i=1}^\infty E_k$.

Рассмотрим $A:D(A)\to X^*$ — однозначный оператор с областью определения $D(A)\subset X.$ Предположим, что $D(A)\supset E.$

Определение 5 (см. [7]). Будем говорить, что оператор A удовлетворяет условию $(S_+)_E$, если для любого $h \in X^*$ п любой последовательности $\{u_j\} \subset E$ такой, что $u_j \rightharpoonup u_0$ и

$$\overline{\lim_{j\to\infty}}\langle A(u_j), u_j\rangle \le \langle h, u_0\rangle, \ \lim_{j\to\infty}\langle A(u_j), v\rangle = \langle h, v\rangle$$

для любого $v \in E$, справедливо $u_j \to u_0, u_0 \in D(A), A(u_0) = h$.

Условие $(S_+)_E$ – обобщение хорошо известного условия монотонности (S_+) . В работах [6, 7] была построена теория степени $(S_+)_E$ -отображений.

Наша цель – введение понятия топологической степени для многозначных возмущений $(S_+)_E$ -отображений, т.е. отображений вида A-G, где A – оператор, удовлетворяющий условию $(S_+)_E$, G – многозначное отображение.

Предположим, что:

- 1) оператор A удовлетворяет условию $(S_{+})_{E}$;
- 2) для любого $v \in E$ u $k \in \mathbb{N}$ функция $\alpha_{v,k} : E_k \to \mathbb{R}$, $\alpha_{v,k}(u) = \langle A(u), v \rangle$, непрерывна.

Для многозначного отображения $G: D(G) \to X^*$ с областью определения $D(G), D(A) \subset D(G) \subset X$, предположим выполненными следующие условия:

- 3) $G = \varphi \circ \Sigma$ принадлежит классу $CJ(D(G), X^*)$;
- 4) для любого ограниченного множества $M\subset X$ множество $\Sigma(D(G)\cap M)$ относительно компактно.

Пусть U – открытое ограниченное подмножество X. Символами $\bar{U}, \partial U$ обозначим соответственно замыкание и границу множества U.

Предположим, что:

- 5) для любого k множество $\overline{U \cap E_k}$ локально стягиваемо;
- б) включение

$$A(u) \in G(u), \ u \in D(A)$$

не имеет решений, принадлежащих ∂U .

При выполнении условий 1)-6) мы определим $\mathrm{Deg}(A-G,U,0)$ – степень многозначного отображения A-G множества U относительно точки $0\in X^*$. Для того чтобы привести конструкцию степени, нам потребуются некоторые вспомогательные утверждения.

Введем конечномерный проектор $\pi_k: X^* \to E_k, \, \pi_k(h) = \sum_{i=1}^k \langle h, v_i \rangle v_i.$

Обозначим $A_k = \pi_k \circ A, G_k = \pi_k \circ G, \varphi_k = \pi_k \circ \varphi.$

Лемма 3. Пусть M – замкнутое ограниченное подмножество X. Пусть включение

$$A(u) \in G(u), u \in D(A)$$

не имеет решений, принадлежащих M. Тогда существует k_0 такое, что при $k \geq k_0$ включение

$$A_k(u) \in G_k(u), \ u \in E_k$$

не имеет решений, принадлежащих M.

 \square Доказательство этого утверждения проведем методом от противного. Предположим, что существует последовательность $u_j \in E_{k_i} \cap M$ такая, что $A_{k_i}(u_j) \in G_{k_i}(u_j)$

51

и $k_j \to \infty$ при $j \to \infty$. В этом случае найдется последовательность $g_j \in G(u_j)$, для которой справедливо:

$$\langle A(u_j) - g_j, v_i \rangle = 0, \ i = 1, \dots, k_j. \tag{1}$$

Поскольку последовательность $\{u_j\}$ ограничена, можно считать, что $u_j \rightharpoonup u_0 \in X$. Кроме того, в силу условия 4) можно полагать, что $g_j \to g_0 \in X^*$.

Из (1) следует, что

$$\langle A(u_j), u_j \rangle = \langle g_j, u_j \rangle.$$

Поэтому

$$\lim_{i\to\infty} \langle A(u_j), u_j \rangle = \langle g_0, u_0 \rangle.$$

Аналогично

$$\lim_{j \to \infty} \langle A(u_j), v \rangle = \langle g_0, v \rangle$$

для любого $v \in E$. Отсюда с учетом замкнутости множества M и условия 1) получаем: $u_i \to u_0, \ u_0 \in D(A) \cap M$ и $A(u_0) = g_0$.

Так как $D(A) \subset D(G)$, то $u_0 \in D(G)$. Поскольку $u_j \to u_0$, $g_j \to g_0$, $g_j \in G(u_j)$ и мультиотображение G полунепрерывно сверху, имеем $g_0 \in G(u_0)$. Следовательно, $A(u_0) \in G(u_0)$ и $u_0 \in D(A) \cap M$, что противоречит условиям леммы. Лемма доказана.

Пусть $k \geq k_0$. Определим степень многозначного отображения $A_k - G_k : U \cap E_k \to E_k$ по формуле:

$$\operatorname{Deg}(A_k - G_k, U \cap E_k, 0) = \operatorname{deg}(A_k - \varphi_k \circ \sigma_{\varepsilon_k}, U \cap E_k, 0), \tag{2}$$

где символ deg обозначает степень однозначного конечномерного отображения, ε_k – достаточно малое положительное число, σ_{ε_k} – ε_k -аппроксимация мультиотображения $\Sigma|_{\overline{U} \cap \overline{E}_k}$ (существование аппроксимации следует из леммы 2).

Покажем, что данное определение корректно. Во-первых, заметим, что при достаточно малом ε_k степень в правой части (2) определена, поскольку

$$A_k(u) - \varphi_k \circ \sigma_{\varepsilon_k}(u) \neq 0, \ u \in \partial U \cap E_k.$$

Последнее соотношение следует из условия 6), лемм 1,3.

Далее, покажем, что степень в правой части (2) не зависит от выбора ε_k -аппроксимации, т. е.

$$\deg(A_k - \varphi_k \circ \sigma_{\varepsilon_k}, U \cap E_k, 0) = \deg(A_k - \varphi_k \circ \sigma'_{\varepsilon_k}, U \cap E_k, 0)$$
(3)

для любых $\sigma_{\varepsilon_k}, \sigma'_{\varepsilon_k} \in a(\Sigma|_{\overline{U} \cap \overline{E}_k}, \varepsilon_k)$ при достаточно малом ε_k .

Из лемм 1–3 и условия $\tilde{6}$) следует, что аппроксимации $\sigma_{\varepsilon_k}, \sigma'_{\varepsilon_k}$ можно соединить непрерывной деформацией $\tilde{\sigma}: \overline{U \cap E_k} \times [0,1] \to \mathfrak{Z}$ такой, что $\tilde{\sigma}(\cdot,0) = \sigma_{\varepsilon_k}$ $\tilde{\sigma}(\cdot,1) = \sigma'_{\varepsilon_k}$ и

$$A_k(u) - \varphi_k \circ \tilde{\sigma}(u, t) \neq 0, \ u \in \partial U \cap E_k, \ t \in [0, 1].$$

Отсюда в силу свойства гомотопической инвариантности степени конечномерных отображений и следует равенство (3).

Справедливо следующее утверждение о стабилизации степени (2) при $k \to \infty$.

Лемма 4. Существует k_1 такое, что при $k \ge k_1$ величина $\mathrm{Deg}(A_k - G_k, U \cap E_k, 0)$ не зависит от k.

□ Для доказательства леммы достаточно установить, что

$$Deg(A_{k+1} - G_{k+1}, U \cap E_{k+1}, 0) = Deg(A_k - G_k, U \cap E_k, 0)$$
(4)

при «больших» k.

НАУЧНЫЕ ВЕДОМОСТИ

Будем считать, что в (2) величины ε_k , $k=1,2,\ldots$, выбраны так, что последовательность $\{\varepsilon_k\}$ монотонно убывает и $\varepsilon_k \to 0$ при $k \to \infty$.

Пусть h_j , $j=1,2\ldots$, – элементы пространства X^* , удовлетворяющие условию $\langle h_j, v_i \rangle = \delta_{ij}$, $i \in \{1,\ldots,j\}$, где δ_{ij} – символ Кронекера.

Рассмотрим отображение $R_{k+1}: U \cap E_{k+1} \to E_{k+1}$,

$$R_{k+1}(u) = A_k(u) - \varphi_k \circ \sigma_{\varepsilon_{k+1}}(u) + \langle h_{k+1}, u \rangle v_{k+1}.$$

Покажем, что при достаточно больших k

$$t(A_{k+1}(u) - \varphi_{k+1} \circ \sigma_{\varepsilon_{k+1}}(u)) + (1-t)R_{k+1}(u) \neq 0, \ (u,t) \in \partial(U \cap E_{k+1}) \times [0,1].$$
 (5)

Предположим противное. Тогда без ограничения общности можно утверждать, что существуют последовательности $t_m \in [0,1], u_m \in \partial(U \cap E_m), u_m \rightharpoonup u_0$, такие, что

$$t_m(A_m(u_m) - \varphi_m \circ \sigma_{\varepsilon_m}(u_m)) + (1 - t_m)R_m(u_m) = 0.$$

Последнее равенство эквивалентно следующим соотношениям

$$\langle A(u_m) - \varphi \circ \sigma_{\varepsilon_m}(u_m), v_i \rangle = 0, \ i = 1, \dots, m - 1, \tag{6}$$

$$t_m \langle A(u_m) - \varphi \circ \sigma_{\varepsilon_m}(u_m), v_m \rangle + (1 - t_m) \langle h_m, u_m \rangle = 0.$$
 (7)

В силу условия 4) можно считать, что $\sigma_{\varepsilon_m}(u_m) \to q_0 \in \mathbb{Z}$ при $m \to \infty$. Поэтому для любого $v \in E$

$$\lim_{m \to \infty} \langle A(u_m), v \rangle = \lim_{m \to \infty} \langle \varphi \circ \sigma_{\varepsilon_m}(u_m), v \rangle = \langle \varphi(q_0), v \rangle. \tag{8}$$

Оценим теперь величину $\overline{\lim}_{m\to\infty} \langle A(u_m), u_m \rangle$.

Поскольку $u_m \in E_m$, то u_m можно представить в виде

$$u_m = \sum_{i=1}^m \xi_i^m v_i, \ \xi_i^m \in \mathbb{R}.$$

С учетом равенств (6), (7) получим

$$\langle A(u_m), u_m \rangle = \sum_{i=1}^m \xi_i^m \langle A(u_m), v_i \rangle = \sum_{i=1}^m \xi_i^m \langle \varphi \circ \sigma_{\varepsilon_m}(u_m), v_i \rangle -$$

НАУЧНЫЕ ВЕДОМОСТИ

$$-\xi_m^m \frac{1-t_m}{t_m} \langle h_m, u_m \rangle = \langle \varphi \circ \sigma_{\varepsilon_m}(u_m), u_m \rangle - \xi_m^m \frac{1-t_m}{t_m} \langle h_m, u_m \rangle. \tag{9}$$

Поскольку

$$\langle h_m, u_m \rangle = \langle h_m, \sum_{i=1}^m \xi_i^m v_i \rangle = \sum_{i=1}^m \xi_i^m \langle h_m, v_i \rangle = \xi_m^m,$$

то из (9) следует

$$\langle A(u_m), u_m \rangle \le \langle \varphi \circ \sigma_{\varepsilon_m}(u_m), u_m \rangle.$$

Поэтому

$$\overline{\lim}_{m \to \infty} \langle A(u_m), u_m \rangle \le \langle \varphi(q_0), u_0 \rangle. \tag{10}$$

Так как оператор A удовлетворяет условию $(S_+)_E$, то из (8), (10) следует, что $u_m \to u_0$, $u_0 \in D(A) \cap \partial U$ и $A(u_0) = \varphi(q_0)$.

Из $u_m \to u_0$, $\sigma_{\varepsilon_m}(u_m) \to q_0$, $\varepsilon_m \to 0$ и полунепрерывности сверху многозначного отображения Σ следует, что $q_0 \in \Sigma(u_0)$. Поэтому

$$A(u_0) = \varphi(q_0) \in \varphi \circ \Sigma(u_0) = G(u_0),$$

что противоречит условию 6). Таким образом, справедливость соотношения (5) доказана.

В силу свойства гомотопической инвариантности степени конечномерных из (5) следует, что

$$\deg(A_{k+1} - \varphi_{k+1} \circ \sigma_{\varepsilon_{k+1}}, U \cap E_{k+1}, 0) = \deg(R_{k+1}, U \cap E_{k+1}, 0).$$

Кроме того, используя лемму Лере-Шаудера (см. например, [12]), получим, что

$$\deg(A_k - \varphi_k \circ \sigma_{\varepsilon_{k+1}}, U \cap E_k, 0) = \deg(R_{k+1}, U \cap E_{k+1}, 0).$$

Поэтому

$$\deg(A_{k+1} - \varphi_{k+1} \circ \sigma_{\varepsilon_{k+1}}, U \cap E_{k+1}, 0) = \deg(A_k - \varphi_k \circ \sigma_{\varepsilon_{k+1}}, U \cap E_k, 0). \tag{11}$$

В силу независимости степени (2) от выбора ε_k -аппроксимации величина, стоящая в правой части (11), может быть использована для вычисления $\operatorname{Deg}(A_k - G_k, U \cap E_k, 0)$. Кроме того, очевидно, что степень из левой части (11) определяет $\operatorname{Deg}(A_{k+1} - G_{k+1}, U \cap E_{k+1}, 0)$. Таким образом приходим к требуемому равенству (4).

Теперь мы можем дать основное определение.

Определение 6. Пусть выполнены условия 1)-6). Степенью многозначного отображения A-G множества U относительно точки $0 \in X^*$ назовем число

$$\operatorname{Deg}(A - G, U, 0) = \lim_{k \to \infty} \operatorname{Deg}(A_k - G_k, U \cap E_k, 0).$$

Для введенной таким образом характеристики выполнены все стандартные свойства топологической степени. Отметим свойство гомотопической инвариантности степени.

Рассмотрим $\widetilde{A}: D(\widetilde{A}) \to X^*$ – отображение с областью определения $D(\widetilde{A}) \subset X \times [0,1]$. Обозначим $D(\widetilde{A}(\cdot,\lambda)) = \{u \in X: (u,\lambda) \in D(\widetilde{A})\}$. Предположим, что $E \subset D(\widetilde{A}(\cdot,\lambda))$ для любого $\lambda \in [0,1]$. Предположим также, что для любого $v \in E$ и $k \in \mathbb{N}$ функция

$$\alpha_{v,k}: E_k \times [0,1] \to \mathbb{R}, \ \alpha_{v,k}(u,\lambda) = \langle \widetilde{A}(u,\lambda), v \rangle$$

непрерывна.

Определение 7. Будем говорить, что оператор \widetilde{A} удовлетворяет условию $(\widetilde{S}_+)_E$, если для любого $h \in X^*$ и любых последовательностей $\{u_j\} \subset E$, $\{\lambda_j\} \subset [0,1]$ таких, что $u_j \rightharpoonup u_0$, $\lambda_j \to \lambda_0$ и

$$\overline{\lim_{j \to \infty}} \langle \widetilde{A}(u_j, \lambda_j), u_j \rangle \le \langle h, u_0 \rangle, \quad \lim_{j \to \infty} \langle \widetilde{A}(u_j, \lambda_j), v \rangle = \langle h, v \rangle$$

для любого $v \in E$, справедливо $u_j \to u_0$, $u_0 \in D(\widetilde{A}(\cdot, \lambda_0))$, $\widetilde{A}(u_0, \lambda_0) = h$.

Рассмотрим отображения $A_i: D(A_i) \cap \bar{U} \to X^*, G_i: D(G_i) \cap \bar{U} \to X^*, G_i = \varphi_i \circ \Sigma_i, E \subset D(A_i) \subset D(G_i), i = 0, 1.$

Определение 8. Будем говорить, что многозначные отображения $A_0 - G_0$ и $A_1 - G_1$ гомотопны, если выполнены следующие условия:

i) существует отображение $\widetilde{A},$ удовлетворяющее условию $(\widetilde{S}_+)_E$ п равенствам

$$\widetilde{A}(\cdot,0) = A_0, \ \widetilde{A}(\cdot,1) = A_1;$$

ii) существует мультпотображение $\widetilde{\Sigma}:D(\widetilde{\Sigma})\to \mathfrak{T},\,D(\widetilde{\Sigma})\subset X imes[0,1],\,D(\widetilde{\Sigma})\supset D(\widetilde{A}),$ $\widetilde{\Sigma}\in J(D(\widetilde{\Sigma}),\mathfrak{T}),\,$ такое, что

$$\widetilde{\Sigma}(\cdot,0) = \Sigma_0, \ \widetilde{\Sigma}(\cdot,1) = \Sigma_1$$

и для любого ограниченного $M \subset X \times [0,1]$ множество $\widetilde{\Sigma}(D(\widetilde{\Sigma}) \cap M)$ относительно компактно в пространстве \mathfrak{T} ;

iii) существует непрерывное отображение $\widetilde{\varphi}: \mathfrak{T} \times [0,1] \to X^*$ такое, что

$$\widetilde{\varphi}(\cdot,0)=\varphi_0,\ \ \widetilde{\varphi}(\cdot,1)=\varphi_1;$$

iv) включение

$$\widetilde{A}(u,\lambda) \in \widetilde{G}(u,\lambda), \ (u,\lambda) \in D(\widetilde{A}),$$

где $\widetilde{G}(u,\lambda)=\widetilde{\varphi}(\widetilde{\Sigma}(u,\lambda),\lambda)$, не имеет решений, принадлежащих $\partial U\times [0,1].$

Используя свойство гомотопической инвариантности степени конечномерных отображений, нетрудно установить справедливость следующего утверждения.

Теорема 1. Если многозначные отображения $A_0 - G_0$ и $A_1 - G_1$ гомотопны, то

$$Deg(A_0 - G_0, U, 0) = Deg(A_1 - G_1, U, 0).$$

Теорема 2. Если $Deg(A - G, U, 0) \neq 0$, то включение

$$A(u) \in G(u), u \in U \cap D(A)$$

имеет по крайней мере одно решение.

 \Box Предположим противное. Тогда, согласно лемме 3, при достаточно больших k включение

$$A_k(u) \in G_k(u), u \in E_k,$$

не имеет решений, принадлежащих множеству \bar{U} . В этом случае в силу леммы 1

$$A_k(u) - \varphi_k \circ \sigma_{\varepsilon_k}(u) \neq 0, \ u \in \overline{U \cap E_k}.$$

Здесь σ_{ε_k} – ε_k -аппроксимация $\Sigma|_{\overline{U}\cap \overline{E}_k}$ с достаточно малым ε_k .

Из определения 6 и свойств степени конечномерных отображений следует, что

$$Deg(A - G, U, 0) = deg(A_k - \varphi_k \circ \sigma_{\varepsilon_k}, U \cap E_k, 0) = 0.$$

Полученное противоречие и доказывает теорему.

3. Пример

Проиллюстрируем, как может быть использована построенная теория степени при изучении задач управления с обратной связью.

Рассмотрим следующую задачу:

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \left\{ \rho^2(v) \frac{\partial v}{\partial x_i} + a_i \left(x, v, \frac{\partial v}{\partial x_1}, \dots, \frac{\partial v}{\partial x_n} \right) \right\} = f\left(x, v, u \right), \tag{12}$$

$$v(x) = 0, \ x \in \partial\Omega. \tag{13}$$

Здесь $\Omega \subset \mathbb{R}^n$ – область с достаточно гладкой границей $\partial\Omega$, ρ , a_i , f – известные функции. Искомыми являются функция состояния v(x) и управление u(x). Предполагается, что

$$u \in U(v), \tag{14}$$

где U — многозначное отображение, определяющее в системе управление с обратной связью.

Опишем условия, при которых рассматривается задача (12) – (14). Пусть функция ρ обладает свойством:

ho) Функция $ho:\mathbb{R} o\mathbb{R}$ непрерывна и удовлетворяет оценке

$$0 \le \rho(t) \le \mu \left\{ \left| \int_0^t \rho(s) \, ds \right| + 1 \right\}^r, \ t \in \mathbb{R}$$

c константами $\mu > 0, \ 0 \le r < \frac{n}{n-2}.$

Отметим, что данное условие «роста» не является ограничительным. Этому условию удовлетворяет даже функция $\rho(t)=e^t$ с экспоненциальным ростом.

Предположим, что для функций $a_i: \bar{\Omega} \times \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}, i=1,\ldots,n$ выполнены следующие условия:

- a_1) при фиксированных $\eta \in \mathbb{R}$, $\xi \in \mathbb{R}^n$ функция $a_i(\cdot, \eta, \xi)$ является измеримой;
- a_2) при почти всех $x \in \bar{\Omega}$ функция $a_i(x,\cdot,\cdot)$ является непрерывной;
- $a_3)$ существуют положительные константы $p,\ p_1,\ \nu_1,\ \nu_2$ и функция $g_0(x)$ такие, что

$$\sum_{i=1}^{n} (a_i(x, \eta, \xi) - a_i(x, \eta, \xi')) (\xi_i - \xi_i') \ge \nu_1 |\xi - \xi'|^p,$$

$$|a_i(x, \eta, \xi)| \le \nu_2 (|\eta|^{p_1} + |\xi|)^{p-1} + g_0(x)$$

при любых $x \in \bar{\Omega}$, $\eta \in \mathbb{R}$, $\xi, \xi' \in \mathbb{R}^n$, причем $g_0 \in L_{\frac{p}{p-1}}(\Omega)$, $p_1 < \frac{n}{n-p}$, $2 \le p < n$.

Предположим также, что

f) функция $f: \overline{\Omega} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ непрерывна и удовлетворяет оценке

$$|f(x, y_1, y_2)| \le C(|y_1|^{\alpha} + |y_2|^{\beta}) + g_1(x),$$

 $\ \, \epsilon \partial e \,\, g_1 \in L_{\frac{p}{p-1}}(\Omega), \,\, C>0, \,\, \alpha = \tfrac{p_2(p-1)}{p}, \,\, \beta = \tfrac{q(p-1)}{p}, \,\, 1 < p_2 < \tfrac{np}{n-p}, \,\, q>1;$

и) многозначное отображение $U:L_{p_2}(\Omega)\to L_q(\Omega)$ полунепрерывно сверху и для любого $v\in L_{p_2}(\Omega)$ множество U(v) асферично.

Задачу (12)–(14) будем рассматривать в слабой постановке. Символом $W_0^{1,p}(\Omega)$ обозначим подпространство соболевского пространства $W^{1,p}(\Omega)$, получающееся замыканием множества всех бесконечно дифференцируемых функций с носителями Ω по норме $W^{1,p}(\Omega)$.

Определение 9. Обобщенным решением задачи (12) — (14) назовем пару функций $(v,u)\in W_0^{1,p}(\Omega)\times L_q(\Omega)$, для которой выполнено включение (14) и равенство

$$\sum_{i=1}^{n} \int_{\Omega} \left\{ \rho^{2}(v) \frac{\partial v}{\partial x_{i}} + a_{i}\left(x, v, \frac{\partial v}{\partial x_{1}}, \dots, \frac{\partial v}{\partial x_{n}}\right) \right\} \frac{\partial \psi}{\partial x_{i}} dx = \int_{\Omega} f(x, v, u) \psi dx$$

для любого $\psi \in W_0^{1,p}(\Omega)$.

Чтобы сформулировать теорему о разрешимости задачи (12)–(14), введем вспомогательное однопараметрическое семейство задач:

$$\sum_{i=1}^{n} \frac{\partial}{\partial x_i} \Big\{ \rho^{2\lambda}(v) \frac{\partial v}{\partial x_i} + \lambda a_i \Big(x, v, \frac{\partial v}{\partial x_1}, \dots, \frac{\partial v}{\partial x_n} \Big) +$$

$$+(1-\lambda)\left|\frac{\partial v}{\partial x}\right|^{p-2}\frac{\partial v}{\partial x_i}\right\} = \lambda f(x,v,u), \ \lambda \in [0,1], \tag{15}$$

$$v(x) = 0, \ x \in \partial\Omega. \tag{16}$$

$$u \in U(v). \tag{17}$$

Обозначим $M = \{v \in W_0^{1,p}(\Omega) : \text{ существуют } u \in L_q(\Omega), \lambda_0 \in [0,1] \text{ такие, что пара } (v,u)$ является обобщенным решением задачи (15)–(17) с $\lambda = \lambda_0\}$.

Теорема 3. Пусть выполнены условия ρ), a_1)- a_3), f), u). Предположим, что множество M ограничено. Тогда задача (12)-(14) имеет по крайней мере одно обобщенное решение.

□ Для доказательства теоремы воспользуемся теорией степени, построеннной во втором параграфе. Сначала дадим операторную трактовку рассматриваемой задачи.

Обозначим через $C_0^{\infty}(\Omega)$ множество всех бесконечно дифференцируемых функций с носителем Ω . Зафиксируем $\{v_m\}_{m=1}^{\infty} \subset C_0^{\infty}(\Omega)$ - полную систему элементов в пространстве $W_0^{1,p}(\Omega)$. Предположим, что при каждом k элементы v_1, \ldots, v_k линейно независимы.

Обозначим через E_k линейную оболочку элементов v_1, \ldots, v_k . Обозначим $E = \bigcup_{k=1}^{\infty} E_k$.

Ввведем оператор

$$\widetilde{A}: D(\widetilde{A}) \subset W_0^{1,p}(\Omega) \times [0,1] \to [W_0^{1,p}(\Omega)]^*,$$

$$\langle \widetilde{A}(v,\lambda), \psi \rangle = \sum_{i=1}^n \int_{\Omega} \left\{ \rho^{2\lambda}(v) \frac{\partial v}{\partial x_i} + \lambda a_i \left(x, v, \frac{\partial v}{\partial x_1}, \dots, \frac{\partial v}{\partial x_n}\right) + (1-\lambda) \left| \frac{\partial v}{\partial x} \right|^{p-2} \frac{\partial v}{\partial x_i} \right\} \frac{\partial \psi}{\partial x_i} dx,$$

где $\psi \in W^{1,p}_0(\Omega), D(\widetilde{A}) = \{(v,\lambda) \in W^{1,p}_0(\Omega) \times [0,1]: \rho^{2\lambda}(v) \frac{\partial v}{\partial x_i} \in L_{\frac{p}{p-1}}(\Omega) \}.$

Согласно [6], оператор \widetilde{A} удовлетворяет условию $(\widetilde{S}_+)_E$.

Рассмотрим многозначное отображение

$$\widetilde{\Sigma}: W_0^{1,p}(\Omega) \times [0,1] \to L_{p_2}(\Omega) \times L_q(\Omega),$$

$$\widetilde{\Sigma}(v,\lambda) = \{i(v)\} \times U(i(v)),$$

где $i:W_0^{1,p}(\Omega)\to L_{p_2}(\Omega)$ – оператор вложения. В силу теорем вложения соболевских пространств (см, например, [13]) оператор i определен корректно и является компактным. Поэтому для любого ограниченного множества $Q\subset W_0^{1,p}(\Omega)\times [0,1]$ множество $\widetilde{\Sigma}(Q)$ является относительно компактным в $L_{p_2}(\Omega)\times L_q(\Omega)$. Кроме того, из условия и) следует, что $\widetilde{\Sigma}\in J\big(W_0^{1,p}(\Omega)\times [0,1],L_{p_2}(\Omega)\times L_q(\Omega)\big)$.

Определим отображение

$$\widetilde{\varphi}: L_{p_2}(\Omega) \times L_q(\Omega) \times [0,1] \to [W_0^{1,p}(\Omega)]^*,$$
$$\langle \widetilde{\varphi}(v,u,\lambda), \psi \rangle = \lambda \int_{\Omega} f(x,v,u) \psi(x) \, dx, \ \psi \in W_0^{1,p}(\Omega).$$

Из теоремы М.А. Красносельского о непрерывности оператора суперпозиции (см., например, [12, предложение 1.1, с. 9]) и условия f) следует, что оператор $\widetilde{\varphi}$ является непрерывным.

Обозначим

$$\widetilde{G}(v,\lambda) = \widetilde{\varphi}(\widetilde{\Sigma}(v,\lambda),\lambda), \ v \in W_0^{1,p}(\Omega), \lambda \in [0,1].$$

Для доказательства теоремы достаточно показать, что включение

$$\widetilde{A}(v,1) \in \widetilde{G}(v,1)$$

имеет по крайней мере одно решение $v \in W_0^{1,p}(\Omega)$.

Из условий теоремы следует, что существует шар $\mathcal{B} = \{v \in W^{1,p}_0(\Omega): \|v\| < R\}$ такой, что $M \subset \mathcal{B}$.

В силу установленных свойств выше свойств операторов $\widetilde{A}, \widetilde{\Sigma}, \widetilde{\varphi}$ отображения $\widetilde{A}(\cdot, 0)$ — $\widetilde{G}(\cdot,0),\,\widetilde{A}(\cdot,1)-\widetilde{G}(\cdot,1)$ гомотопны в смысле определения 8 (при $U=\mathcal{B}$). В этом случае, согласно теореме 1.

$$\operatorname{Deg}(\widetilde{A}(\cdot,1) - \widetilde{G}(\cdot,1), \mathcal{B}, 0) = \operatorname{Deg}(\widetilde{A}(\cdot,0) - \widetilde{G}(\cdot,0), \mathcal{B}, 0). \tag{18}$$

Поскольку $\widetilde{A}(\cdot,0)-\widetilde{G}(\cdot,0)=\widetilde{A}(\cdot,0),$ то вычисление степени (18) сводится вычислению степени $Deg(\widetilde{A}(\cdot,0),\mathcal{B},0)$.

Заметим, что $D(\widetilde{A}(\cdot,0))=W_0^{1,p}(\Omega)$ и

$$\langle \widetilde{A}(v,0), v \rangle > 0, \ v \in \partial \mathcal{B}.$$

Отсюда в силу свойств степени (S_+) -отображений [12] получаем, что

$$\operatorname{Deg}(\widetilde{A}(\cdot,0),\mathcal{B},0)=1$$

и, следовательно,

$$\operatorname{Deg}(\widetilde{A}(\cdot,1) - \widetilde{G}(\cdot,1), \mathfrak{B}, 0) = 1.$$

Таким образом, разрешимость включения $\widetilde{A}(v,1) \in \widetilde{G}(v,1)$ следует из теоремы 2.

Заключение

В работе построена новая топологическая характеристика – степень отображений вида A-G, где A – однозначный плотно определенный оператор, удовлетворяющий условию $(S_{+})_{E}$, $G = \varphi \circ \Sigma$, φ – однозначный оператор, Σ – компактное многозначное отображение с асферичными образами. Изучены основные свойства данной характеристики. С помощью построенной степени доказана разрешимость задачи управления с обратной связью для одного класса нелинейных уравнений эллиптического типа.

Литература

1. Борисович Ю.Г., Гельман Б.Д., Мышкис А.Д., Обуховский В.В. Введение в теорию многозначных отображений и дифференциальных включений. 2-е, доп. изд. / Москва: Либоком, 2011. – 224 с.

- 2. Zvyagin V.G., Baranovskii E.S. Topological degree of condensing multi-valued perturbations of the $(S)_+$ -class maps and its applications // Journal of Mathematical Sciences. 2010. 170;3. P. 405-422.
- 3. Барановский Е.С. Исследование задач оптимизации. Методы теории степени многозначных отображений монотонного типа / Saarbrücken: LAP, 2011. 112 с.
- 4. Барановский Е.С. Об оптимальных задачах для систем параболического типа с асферичными множествами допустимых управлений // Известия вузов. Математика. -2009. -12. C.74-79.
- 5. Барановский Е.С. Теоремы о структуре множества решений одного класса операторных включений и их приложения // Вестник ВГУ. Серия: Физика. Математика. -2010.-1.- С.71-80.
- 6. Kartsatos A.G., Skrypnik I.V. Topological degree theories for densely mappings involving operators of type $(S)_+$ // Adv. Differential Equations. -1999. -4;3. -P.413-456.
- 7. Kartsatos A.G., Skrypnik I.V. The index of a critical point for nonlinear elliptic operators with strong coefficient growth // J. Math. Soc. Japan. 2000. 52;1. P.109-137.
- 8. Kartsatos A.G., Skrypnik I.V. A new topological degree theory for densely defined quasibounded (\bar{S}_+) -perturbations of multivalued maximal monotone operators in reflexive Banach spaces // Abstract and Applied Analysis. -2005. -2. -P.121-158.
- 9. Obukhovskii V., Zecca P., Zvyagin V. An oriented index for nonlinear Fredholm inclusions with nonconvex-valued perturbations // Abstract and Applied Analysis. 2006. P.1-21.
- 10. Gorniewicz L. Topological Fixed Point Theory of Multivalued Mappings / Dordrecht-Boston-London: Kluwer Academic Publishers, 1999. 399 p.
- 11. Gorniewicz L., Granas A., Kryszewski W. On the homotopy method in the fixed point index theory for multi-mappings of compact absolute neighborhood retracts // J. Math. Anal. Appl. 1991. 161;2. P.457-473.
- 12. Скрыпник И.В. Методы исследования нелинейных эллиптических граничных задач / М.: Наука, 1990. 448 с.
- 13. Adams R.A., Fournier J.J.F. Sobolev spases. 2 ed./ Elsevier, Oxford, 2003. 305 p.

TOPOLOGICAL DEGREE FOR MULTIVALUED PERTURBATIONS OF DENSELY DEFINED OPERATORS OF MONOTONE TYPE AND ITS APPLICATIONS

E.S. Baranovskii

Voronezh State University, Universitetskaya sq., 1, Voronezh, 394006, Russia, e-mail: bes220@rambler.ru

Abstract. Introduction of the topological degree of multivalued perturbations of densely defined operators of type (S_+) is proposed. Basic properties of this topological characteristic are studied. The constructed concept is applied to feedback control problem for nonlinear elliptic equation.

Key words: topological degree, monotone type mappings, densely defined operators of the class (S_+) , multivalued maps, aspheric sets, feedback control, nonlinear elliptic problems.