

УДК 615.32

РАСТЕНИЯ, СОДЕРЖАЩИЕ ПОДОФИЛЛОТОКСИН

Р.Р. МУРАДХАНОВ Д.А. КОНОВАЛОВ

Пятигорская государственная фармацевтическая академия

e-mail: rsln_m@mail.ru

Обзор посвящен имеющимся в современной научной литературе данным о растениях, накапливающих подофиллотоксин. Данное соединение относится к классу лигнанов и имеет большое значение для медицины, так как применяется в терапии различных новообразований кожи и слизистых, а также является исходным веществом для синтеза многих противоопухолевых препаратов, применяемых при лечении рака легких, желудка, мозга и других онкологических заболеваниях.

Ключевые слова: подофиллотоксин, лекарственное растительное сырье, лигнаны, противоопухолевая активность.

Фенилтетрагидронафталиновый лигнан природного происхождения – подофиллотоксин (рис. 1) является основным активным компонентом известного растительного препарата подофиллина, ранее широко применявшегося в СССР в качестве цитостатического препарата [11 ниже].

Растения, содержащие вещества группы подофиллотоксина, с древнейших времен применяются многими народами в качестве мочегонных, слабительных, противовоспалительных, противопаразитарных средств, а также при лечении различных опухолей и бородавок [2].

Рис. 1. Структура подофиллотоксина

В 1820 году подофиллин (сумма лигнанов и флавоноидов полученная из корневищ подофилла) был включен в Фармакопею США, а в 1864 г. в Британскую фармакопею в качестве слабительного препарата [2, 3].

Позднее был описан противоопухолевый эффект подофиллина, что послужило импульсом к многочисленным исследованиям данного препарата и его компонентов. Подофиллотоксин, как наиболее активный компонент, был впервые выделен из подофиллина и описан в 1880 году В. О. Подвысоцким [2, 4].

В середине XX века был установлен механизм противоопухолевого действия подофиллотоксина и началось его активное применение в медицине при лечении генитальных остроконечных кондилом [4].

Выяснение механизма цитотоксического действия подофиллотоксина открыло перспективы его использования в терапии различных онкологических заболеваний, однако высокая токсичность по отношению к ЖКТ и, вследствие этого, невозможность перорального применения стали причиной множества научных исследований, направленных на получение и изучение фармакологических свойств менее токсичных производных подофиллотоксина [2, 3, 4]. В результате этого в 1960-70 годах XX века были синтезированы и допущены к клиническим исследованиям ставшие впоследствии знаковыми препараты этопозид, тенипозит, этопофос (рис. 2) [3, 4, 5]. Данные препараты нашли широкое применение в комплексной терапии онкологических заболеваний кожи, легких, мозга, груди, яичников. Они также являются препаратами выбора при опухолевых заболеваниях яичка, мелкоклеточном раке легкого и острой лимфобластной лейкемии [1, 2, 4, 5].

За последние два десятилетия еще несколько производных подофиллотоксина были синтезированы и допущены к клиническим исследованиям. Наиболее значимым из них является тафлюпозид — новейший ингибитор топоизомеразы I и II типа с принципиально новым механизмом действия (рис. 2) [4].

$$R_1$$
 R_2 R_3 R_4 R_5 R_5

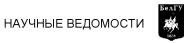
Рис. 2. Полусинтетические производные подофиллотоксина

Использование подофиллотоксина как исходного вещества при синтезе противоопухолевых препаратов обуславливает возрастающую потребность фармацевтической промышленности в данной субстанции. Полный синтез фармакологически активных изомеров подофиллотоксина затруднителен вследствие наличия четырех хиральных центров в его молекуле, а описанные в современной научной литературе способы получения подофиллотоксина и лигнанов этой группы путем биотехнологического синтеза не способны на сегодняшний день удовлетворить потребность фарминдустрии в данном биологически активном соединении. Это обусловлено низким выходом целевого компонента, дороговизной оборудования и, как следствие, низкой рентабельностью производства [4, 6, 7, 8]. Поэтому в промышленных масштабах подофиллотоксин продолжают получать из лекарственного растительного сырья.

Официальным источником подофиллотоксина, на сегодняшний день являются корневища с корнями подофилла [9]. Данный вид сырья заготавливают от 4-5 летних растений двух представителей рода подофилла (сем. Berberidaceae): североамериканского вида — подофилла щитовидного (PodophyllumpeltatumL.) и азиатского вида — п. шеститычинкового (P. hexandrumRoyle), синоним п. гималайский (P. emodiWall). В СССР оба вида были введены в культуру. В 1960-80 годах изучением культуры подофиллов в нашей стране занимались Е.А. Селиванова-Городкова, В.П. Богданова, Г.А. Кузнецова. Промышленные плантации находились в Ленинградской и Львовской областях и на тот период обеспечивали потребность отечественной фармацевтической промышленности в данном сырье для производства препарата подофиллин.

Современная мировая тенденция в решении проблемы получения необходимого количества подофиллотоксина — поиск новых альтернативных растительных источников [3, 4, 10, 11, 12]. Такие факторы, как истощение дикорастущих популяций подофиллов, а также низкая рентабельность их культуры, не позволяют в полной мере удовлетворить потребность фармацевтической промышленности в подофиллотоксине.

Многочисленные исследования выявили накопление подофиллотоксина в представителях различных родов и семейств Царства Растений (табл. 1).


Содержание подофиллотоксина в видах растений

Таблипа 1

№ п/п	Название вида*	Часть расте- ния	Содержание подофиллоток- сина, % от абсолютно сухого сырья	Ссылка на литературу			
1	2	3	4	5			
Сем. Cupressaceae Bartlett							
1	Callitris drummondii (Parl.) F.Muell.	хвоя	1,4	[13]			
2	Juniperus lucayana Britton	хвоя	0,1	[13]			

				Продолжение таб.
1	2	3	4	5
3	Juniperus sabinaL.	хвоя	0,2	[13]
		хвоя	0,15	[14]
4	Juniperus thurifera var. hispanica Mill.	ROGX	0,15	[15]
5	Juniperus sabina var. ta- mariscifolia Aiton	коах	0,14	[13]
6	Juniperus scopulorum Sarg.	коах	0,17	[13]
	Juniperus virginiana L.	хвоя	0,3	[13]
7		хвоя	0,47	[10]
7		хвоя	0,36	[16]
		хвоя	0.16	[17]
8	Juniperus chinensis L.	культуракле- ток	0,4	[18]
		Сем. Негі	nandiaceae Blume	
9	Hernandia sonora L.	семена	следы	[19]
		Сем. Вег	beridaceae Juss.	
10	Diphylleia cymosa Michx.	листья	0,54	[20]
11	Diphylleia grayi F.Schmidt	корни	1,27	[20]
12	Podophyllum hexandrum Royle.	корневища с корнями	4,27	[20]
13	Podophyllum peltatum L.	корневища с корнями	0,25	[20]
		листья	5,2	[21]
14	Podophyllum pleianthum Hance	корневища с корнями	0,14	[20]
15	Podophyllum / Dysosma versipellis Hance	корневища с корнями	0,32	[20]
16	Dysosma pleiantha R.E.Woodson	листья	3,17	[10]
		Сем. Lina	ceae DC. ex Perleb	
17	Linum album Kotschy ex Boiss.	корни	0,02	[22]
18	Linum arboreum L.	корни	0,02	[23]
19	Linum campanulatum L.	корни	0,12	[23]
20	Linum capitatum Kit. ex Schult.	корни	0,02	[20]
21	Linum cariense Boiss.	корни	0,10	[23]

Окончание <u>таб</u>л. 1

				Окончание таб				
22	Linum elegans Spruner ex Boiss.	корни	0,10	[23]				
23	Linum flavum L.	корни	следы	[20, 23]				
24	Linum flavum spp. scabri- nerve	корни	0,04	[23]				
25	Linum mucronatum spp. armenum	корни	0,04	[23]				
26	Linum nodiflorum L.	листья	0,16	[23]				
27	Linum pamphylicum Boiss. & Heldr. ex Planch.	корни	0,10	[23]				
28	Linum tauricumWilld.	корни	0,08	[23]				
29	Linum thracicum Degen	корни	0,04	[23]				
30	Linum austriacum L.	корни	0,04	[23]				
31	Linum lewisii Pursh	корни	0,04	[23]				
0.0	Linum hirsutum L.	листья	0,015	[10]				
32		корни	следы	[23]				
33	Linum usitatissimum L.	листья	0,005	[10]				
34	Linum monogynum G.Forst.	корни	следы	[23]				
35	Linum sibiricum Bunge	корни	следы	[23]				
36	Linum viscosum L.	корни	следы	[23]				
37	Linum corymbulosum Rehb.	корни	следы	[23]				
	Linum persicum Ky. ex Boiss.	листья	0,02	[24]				
38		стебель	0,03					
		культура кле- ток	0,01					
Сем. Polygalaceae Juss.								
39	Polygala polygama Walter	всё растение	0,07	[25]				
Сем. Apiaceae Lindl.								
40	Anthriscus sylvestris (L.) Hoffm.	корневища	следы	[26]				
40				[27]				
Сем. Lamiaceae Lindl.								
41	Hyptis verticillata Jacq.	всё растение	0,25	[28]				
			1					

Примечание: * - название указанное в первоисточнике

Как видно из таблицы, подофиллотоксин может накапливаться в различных органах и частях растения. Содержание его варьирует от следовых количеств до нескольких процентов в пересчете на абсолютно сухое сырьё.

Представители семейства Berberidaceae содержат подофиллотоксин в наибольшем количестве, однако накопление его происходит в основном в подземных органах, что существенно увеличивает срок получения стандартного сырья (4-5 лет) и как следствие значительно снижает экономическую рентабельность культуры данных видов.

Повышению рентабельности культуры п. щитовидного и п. гималайского посвящено несколько исследований научных групп из США, Индии, Китая и других стран. [21, 31].

Установлено накопление гликозидированных форм производных подофиллотоксина в листьях п. щитовидного и п. гималайского [21, 30]. А поскольку листья являются быстро возобновляемым типом лекарственного растительного сырья, то их использование в качестве дополнительных источников биологически активных соединений создает возможности для увеличения выхода целевого продукта с единицы площади плантации и, как следствие, для повышения рентабельности культуры представителей рода Podophyllum.

Одним из перспективных источников является хвоя можжевельника виргинского – JuniperusvirginianaL. (Cupressaceae). Молодые побеги этого растения содержат до 0.5% подофиллотоксина, что, с учетом круглогодичной возможности заготовки сырья, а также большой биомассы на единицу площади, свидетельствует о перспективности этого вида как альтернативного источника подофиллотоксина.

Также определенный интерес представляет изучение изменчивости накопления подофиллотоксина и лигнанов его группы в растениях в зависимости от различных факторов. Исследования проведенные KentE. Cushman и др. посвящены влиянию факторов окружающей среды (освещенность, элементный состав почвы и пр.) на процесс накопления подофиллотоксина в сырье п. щитовидного [32, 33]. Эти данные могут быть использованы при введении в промышленную культуру различных растительных видов.

Заключение. Таким образом, представленный обзор литературы по видам растений, в которых за последние 50-60 лет был обнаружен подофиллотоксин, показывает, что наиболее перспективными источники растительного сырья являются представителями семейств Berberidaceae и Cupressaceae. Однако низкая рентабельность уже используемых видов сырья (корневища с корнями подофилла щитовидного и п. гималайского) не обеспечивает возрастающей потребности отечественной и зарубежной фармацевтической промышленности в подофиллотоксине как источнике существующих и перспективных лекарственных средств. Поэтому изучение новых возобновляемых источников сырья, таких как листья подофиллов и хвоя некоторых видов можжевельников, является актуальной задачей современной фармации.

Литература

- 1. Машковский, М.Д. Лекарственные средства: 15-е изд., перераб. и доп. М., 2008. 703 с.
- 2. Imbert, T. F. (1998) Discovery of Podophyllotoxins. Biochimie. 80. c. 207-222
- 3. Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives / M. Gordaliza [et al.]// Toxicon 44, pp. 441-459
- 4. Ying-Qian Liu, Liu Yang, Xuan Tian (2007) Podophyllotoxin: Current Perspectives // Current Bioactive Compounds 2007. – № 3. – pp. 37-66
- 5. Hande, K. R. (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer, 34, 1514-1521
- 6. Plant cell factories as a source for anti-cancer lignans / R.R.J. Arroo [et al.]/ Phytochemistry Reviews 1,
- Ahmad R., V. K. Sharma, A. K Rai, R. D. B. G. Shivananda (2007) Production of lignans in callus culture of Podophyllum hexandrum, Tropical Journal of Pharmaceutical Research, 6 (4), pp. 803-808
- 8. Podophyllotoxin: Current approaches to its biotechnological production and future challenges / M. Yousefzadi [et al.]// Engineering in Life Science 10, №4, pp. 281–292
 - 9. ФС 42-1475-89 Подофилла корневища с корнями
- 10. Bioprospecting for Podophyllotoxin / E. Bedir [et al.]// Reprinted from: Trends in new crops and new uses. 2002. J. Janick and A. Whipkey (eds.). ASHS Press, Alexandria, VA.
- 11. Shri Ram (2010) Research practices in herbal medicinal plant: a case of study of podophyllotoxin, Annals of Library and Information Studies, Vol. 57, pp. 65-71
 12. Molecules of interest: podophyllotoxin / C. Canel [et al.] // Phytochemistry 54, 115-120
- 13. Konuklugil, B., (1995) The importance of aryltetralin (podophyllum) lignans and their distribution in the Plant Kingdom // J. Fac. Pharm. Ankara 24, 2, pp. 109-125
 - 14. Lignans from Juniperus sabina./ S. Arturo [et al.] // Phytochemistry, 29: 1335-1338
 - 15. Lignans from Juniperus thurifera /S. Arturo [et al.]/ Phytochemistry, 28: 2863-2866
- 16. Bioprospection of Eastern red cedar from nine physiographic regions in Mississippi / J. Archana [et al.]// Industrial Crops and Products, 30, pp. 59-64
- 17. Мурадханов, Р.Р., Фармакогностическое изучение побегов можжевельника виргинского как нового (альтернативного) источника подофиллотоксина / Р.Р. Мурадханов, Д.А. Коновалов, Ф.К. Серебряная, Т.Д. Мезенова // «Молодые ученые в решении актуальных проблем науки»: материалы II Международной научно-практической конференции, Владикавказ, 13-15 мая 2011.

- 18. Premjet, D., S. Tachibana (2004) Production of podophyllotoxin by Immobilized Cell Cultures of Juniperus chinensis. Pakistan Journal of Biological Sciences 7, pp. 1130-1134
 - 19. Lignans from the Seeds of Hernandia sonora./ L. Udino [et al.]// Planta Med., 65: 279-281
- 20. Broomhead, A.J. and Dewick, P.M. (1990) Tumour-inhihitory aryltetralin lignans in Podophyllum versipelle, Diphylleia cymosa and Diphylleia grayi. Phytochemistry, 29: 3831-3837
- 21. High yield of podophyllotoxin from leaves of Podophyllum peltatum by in situ conversion of podophyllotoxin 4-O-b-D-glucopyranoside / C. Canel [et al.]// Planta Med. 67, 97–99
- 22. Potential Anticancer Agents II: Antitumor and Cytotoxic Lignans from Linum album (Linaceae) / S.G. Weiss [et al.]// J. Pharm. Sci., 64: 95-98
 - 23. Konuklugil, B. (1996) Aryltetralin Lignans from Genus Linum // Fitoterapia, 67: 379-381
- 24. Linum persicum: Lignans and placement in Linaceae / A. Mohagheghzadeh [et al.]// Phytochemistry Reviews 2: 363-369
- 25. Hokanson, G.C. (1978) Podophyllotoxin and 4'-demethylpodophyllotoxin from Polygala polygama (Polygalaceae) // J. Nat. Prod., 41: 497-498
- 26. Kozawa, M., Morita, N. and Hata, K. (1978) Structure of Anthriscusin, a New Phenylpropanoid Ester from the Roots of Anthriscus sylvestris Hoffm. // Chem. Pharm. Bull., 26: 1337-1338
- 27. Ikeda, R., Nagao, T., Okabe, H., Nakano, Y., Matsunaga, H., Katano, M. and Mori, M. (1998) Antiproliferative constituents in Umbelliferae plants. III. Constituents in the root and the ground part of Anthriscus sylvestris Hoffm. Chem. Pharm. Bull., 46: 871-874
- 28. Lignans and other compounds from the Mixe indian medicinal plant Hyptis verticillata / M. Kuhnt [et al.] // Phytochemistry, 36:485-489
- 29. Enhanced Production of Podophyllotoxin by Fed-batch Cultivation of Podophyllum hexandrum / S. Chattopadhyay [et al.] // The Canadian Journal of Chemical Engineering, Volume 81
- 30. The american mayapple revisited Podophyllum peltatum —still a potential cash crop? / R. M. Moraes [et al.]// Economic Botany 54(4) pp. 471–476
- 31. Меликова, Л.Н. Опыт выращивания Podophyllum hexandrum (Berberidacea) в условиях центрального Предкавказья / Л.Н. Меликова, Д.А. Коновалов // Растительные ресурсы. 2011. Т. 47, Вып. 2. С. 44-50.
- 32. Cushman K. E., Maqbool M., Lata H., Bedir E., Khan I.A., Moraes R.M. (2005) Podophyllotoxin Content and Yield of American Mayapple Leaves in Sun and Shade HortScience 40(1):60–63. 2005
- 33. Variation in podophyllotoxin concentration in leaves and rhizomes of American mayapple (Podophyllum peltatum L.) / V.D. Zheljazkov [et al.] // Industrial Crops and Products 33 (2011) 633–637

PLANTSCONTAININGPODOPHYLLOTOXIN

R.R. MURADKHANOV D.A. KONOVALOV

Pyatigorsk State Pharmaceutical Academy

e-mail: rsln_m@mail.ru

The review is devoted to data concerning plants, cumulating podophyllotoxin. This substance is a lignan, using in medicine for treatment of neoplasias of skin and mucosa, and is a basic substance, using in antitumoral medications.

Key words: podophyllotoxin, lignans, antitumoral activity.