

УДК І 553.611.6:54-414 1:631.4

МОНТМОРИЛЛОНИТОВЫЕ ГЛИНЫ КАК СОРБЕНТЫ ДЛЯ ОЧИСТКИ ПОЧВЫ ОТ ИОНОВ МЕДИ

Л.Ф. Перистая. А.И. Везенцев. В.В. Скорбач. В.А. Перистый. Л.В. Мирошниченко

Белгородский государственный национальный исследовательский университет, Россия, 308015, г. Белгород, ул. Победы, 85

E-mail: peristaya@bsu.edu.ru

В работе изучены сорбщионные свойства глины месторождения «Поляна» Белгородской области на концентрацию меди в универсальном торфо-грунте.

Ключевые слова: глина, сорбенты, очистка почвы, тяжелые металлы, сорбционная очистка, ионы меди.

Введение

В небольших количествах медь необходима для нормальной жизнедеятельности растений, животных и человека. Она является биогенным микроэлементом. Однако, как избыток меди, так и недостаток ее, как и других элементов, не благоприятен для растений сельскохозяйственного назначения, а значит, в конечном итоге и для здоровья человека

Медь относится к группе тяжелых металлов, которые являются весьма распространенными и опасными загрязнителями биосферы.

Общее содержание меди колеблется от 1 до 200 мг на 1 кг плодородной почвы. Ионы Cu²⁺, поглощённые коллоидными частицами и связанные с органическим веществом почвы, растениям практически недоступны. Доступность меди растениям снижается с подщелачиванием грунта. В почвы медь поступает как с ядохимикатами, которыми обрабатывают сельскохозяйственные культуры, так и с медьсодержащими удобрениями.

В состав удобрений медь вводят в виде кристаллогидрата сульфата меди – $CuSO_4 \cdot 5H_2O$, содержащий медь (25.4 масс. %) в легкорастворимом состоянии. Потребность растений в медьсодержащих удобрениях зависит, прежде всего, от их биологических особенностей и содержания в почве подвижных (усвояемых) форм данного микроэлемента [1].

Поведение меди в почвах и её геохимическая миграция существенно зависят от кислотно-основных и окислительно-восстановительных условий. В кислой среде медь обладает средней степенью подвижности; в нейтральной, щелочной и восстановительной среде - очень низкой подвижностью [2].

Тяжелые металлы, поступающие в верхний слой почвы, накапливаются в почвенной толще, особенно в верхних гумусовых горизонтах, и медленно удаляются при выщелачивании, потреблении растениями, эрозии и дефляции. Первый период полуудаления (т. е. удаления половины от начальной концентрации) тяжелых металлов значительно варьирует для различных элементов, но составляет весьма продолжительные периоды времени: для меди - от 310 до 1500 лет [2].

К числу важнейших компонентов почв, связывающих тяжелые металлы, относятся гидроалюмосиликаты, группы монтмориллонита, т.е. слоистые силикаты структурного типа 2:1 с разбухающей кристаллической решеткой. Сорбционные свойства минеральной части почв обусловлены глинистой фракцией, представленной смесью различных глинистых минералов, к которым относятся каолиниты, смектиты, иллиты, хлориты, вермикулиты.

Растения способны накапливать тяжелые металлы, являясь промежуточным звеном в цепи «почва – растения – животные – человек». По коэффициенту биологического поглощения (n.10-1·n.10°) медь относится к группе элементов слабого накопления и среднего захвата [2]. Они в основном накапливаются в наземных органах растений (листьях, стеблях), причем, во влажные годы сильнее, чем в засушливые.

Загрязнение почвы медью имеет ряд отрицательных экологических последствий. Тяжелые металлы являются протоплазматическими ядами. При токсичных уровнях медь ингибирует деятельность ферментов. Она взаимодействует с клеточными мембранами, изменяя их проницаемость, вызывает разрыв клеточных мембран [2].

В организме человека медь входит в состав 25 белков и ферментов. Вместе с железом участвует в кроветворении, при ее недостатке возможно разрушение эритроцитов. Избыток

меди вызывает болезнь Коновалова-Вильсона. Растворимые соли меди в больших концентрациях токсичны [3, 4].

Весьма опасным является загрязнение ионами меди природной воды, особенно питьевой. Поэтому поиск методов очистки воды от ионов меди с помощью монтмориллонитовых глин ведется нами уже более 10 лет. Результаты этих работ отражены во многих научных публикациях, в частности, в работе [5].

В 2008 году нами были получены положительные результаты по повышению экологического качества почвы путем сорбции ионов тяжелых металлов с помощью природной глины. Опыты были проведены в полевых условиях, при выращивании кукурузы [6].

Объект и методы исследования

Целью данной работы явилось исследование эффективности сорбционной очистки плодородной почвы от ионов меди с помощью обогащенной глины месторождения «Поляна» Белгородской области. При этом решались две конкретные задачи: апробация глины как сорбента для очистки загрязненной почвы от ионов меди(II); определение влияния разного содержания ионов меди(II) в почве на интенсивности роста и развития вегетативной системы редиса сорта «Заря».

Исследования были проведены вегетационным методом. Растения выращивали в деревянных ящиках. Средой для их жизнедеятельности служил универсальный торфогрунт (УТГ).

В наших экспериментальных исследованиях медь вносили в почву в виде водного раствора пентагидрата сульфата меди — $CuSO_4 \cdot 5H_2O$ из расчета 198 мг ионов Cu^{2+} на квадратный метр. В качестве сорбента в почву вносили обогащенную глину месторождения «Поляна» Белгородской области из расчета 90 г/м². Обогащение проводили гравитационным методом путем отмучивания и соответствующим образом определяли гранулометрический состав [7].

Эксперимент проводили по схеме, включающей три варианта опыта: 1. УТГ (контроль); 2. УТГ + соль меди; 3. УТГ + соль меди + глина.

Элементный состав образцов почвы определяли с помощью оптического эмиссионного спектрометра с индуктивно — связанной плазмой ICPE — 9000 SHIMADZU (Япония). Подвижные соединения меди в почве определяли по ГОСТ Р 50683-94 и ГОСТ Р 50684-94 методом атомно-абсорбционной спектрофотометрии, рН почвы определяли с помощью рН-метра по ГОСТ 27753.3-88. Образцы почвы для исследования готовили по стандартной методике. Аналитические электронно—микроскопические исследования экспериментальных образцов включали в себя светопольное исследование в трансмиссионном электронном микроскопе в сочетании с микродифракцией электронов и энергодисперсионным определением элементного состава. Исследования проведены на микроскопе JEOL 2100, оснащенном энергодисперсионным анализатором EELS. Определение массовой доли сорбционно—активного минерала монтмориллонита в глине осуществляли методом адсорбционного люминесцентного анализа, основанного на катионообменной адсорбции глиной органических красителей на основе люминофоров с образованием коагулята органоглинистого комплекса.

Результаты и обсуждение исследования

Проведенные исследования позволили получить следующие результаты.

Химический состав обогащённой глины с размером глинистых частиц меньше 10 мкм представлен следующими оксидами (масс. %) в таблице 1.

Таблица 1

Таблица 2

Химический состав обогащенной глины, %

$SiO_2 - 52.4$	$Al_2 O_3$ – 16.4	$Na_2O - 4.76$
$Fe_2O_3 - 7.25$	CaO - 5.08	$TiO_2 - 0.43$
$K_2O - 3.16$	MgO - 2.36	n.n.n 7.86
$P_{-}O_{-} = 0.05$	$E_0O = 0.24$	

Массовая доля монтмориллонита в исследуемом образце глины составляет 59.5–60.1%. В таблице 2 указано содержание основных элементов в УТГ.

Элементный состав универсального торфогрунта

Содержание	Элементы									
элементов	Al	Са	Fe	J	K	Mg	Na	P	S	Si
мг/г	18	8.6	18	0.81	15	2.8	35	0.91	13	200
масс%	1.8	0.86	1.8	0.081	1.5	0.28	3.5	0.091	1.3	20

В таблице 3 показано общее (валовое) содержание меди и содержание подвижных соединений меди, а также рН трех образцов универсального торфогрунта.

Содержание меди в универсальном торфогрунте

Таблица 3

	Вариант опыта		Подвижные соединен		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		Общее (валовое)	Экстрагирующи		
Nº π/π	Вид грунта	содержание меди, мг/кг	ацетатно- аммонийный буфер- ный раствор с <i>pH</i> 4.8	1н. HCl	рН грунта
1	УТГ	69	3,0	4.9	6.27
2	УТГ + <i>Cu</i> ²⁺	170	3,9	22.3	5.91
3	УТГ + <i>Си</i> ²⁺ + глина	168	2,6	18.1	6.26

Общее (валовое) содержание меди в торфогрунте в образеце №1 составляет 69 мг/кг или $6.9 \cdot 10^{-3}$ масс %. По В.В. Ковальскому, нормальным содержанием меди в почвах является $(1.5 \cdot 6.0) \cdot 10^{-3}$ масс % [8]. Следовательно, исследуемый образец торфогрунта содержит избыточное количество меди. Это можно объяснить тем, что торф, как известно, является хорошим сорбентом.

При внесении в грунт сульфата меди в указанном выше количестве валовое содержание меди увеличилось до 170 мг/кг (образец №2). После внесения глины в торфогрунт, искусственно загрязненный медью, валовое содержание меди уменьшилось до 168 мг/кг (образец №3), т. е. на 1.2 масс. %, а содержание подвижных соединений меди уменьшилось значительно: с 22.3 мг/кг до 18.1 мг/кг — на 18.8 масс. %.

Нами установлено, что избыточное содержание меди в торфогрунте отрицательно сказывается на росте и развитии редиса. Растения усыхают, листочки свертываются, имеют бледную окраску, наблюдается хлороз. Образование корнеплодов не произошло. Особенно отчетливо эти признаки отмечаются с образцом почвы №2, где содержание меди больше, чем в других образцах. Они имеют меньшую высоту стебля и площадь листьев, что иллюстрирует таблица 4, что является следствием содержания подвижных водорастворимых форм меди.

Из таблицы 3 следует, что глина уменьшает концентрацию ионов водорода и соответственно увеличивает рН почвы за счет катионообмена. Следовательно, внесение глины является положительным фактором в борьбе с закислением плодородной почвы.

Таблица 4 Влияние ионов Си²⁺ и сорбционно активной глины на высоту стебля и площадь листа редиса (через месяц после посадки)

Вариант опыта	Содержание меди в почве, мг/г	Высота стебля, см	Площадь листа, см²
1. чистая почва	0.069	5.6	11.09
2. почва + <i>Cu</i> ²⁺	0.170	4.8	9.00
3. почва + <i>Cu</i> ²⁺ + глина	0.110	5.5	10.80

В результате проведенной экспериментальной работы установлено отрицательное воздействие ионов Cu²⁺ и положительное – сорбционно активной монтмориллонитовой глины месторождения «Поляна» Белгородской области на рост и развитие вегетативной системы редиса.

Благодарности. Коллектив авторов выражает глубокую благодарность Центру коллективного пользования НИУ «БелГУ» за проведение исследований на современном аналитическом оборудовании.

Литература

- 1. Сад и огород на приусадебном, дачном участке. / Сост. П.Ф. Паско. Минск: Ураджай, 1994. 543 с.
- 2. Лозановская И.Н., Орлов Д.С., Садовникова Л.К. Экология и охрана биосферы при химическом загрязнении. М.: Высшая школа, 1998. 287 с.
- 3. Голдовская Л.Ф. Химия окружающей среды. М.: Мир; БИНОМ. Лаборатория знаний, 2008. 295 с.
 - 4. Токсикологическая химия/ под ред. Т.В. Плетеневой. М.:ГЭОТАР Медиа, 2005. 512 с.
- 5. Голдовская-Перистая Л.Ф. Исследование способности купинской и протопоповской глин сорбировать тяжелые металлы (медь и свинец) из водных растворов // Сб. материалов Всерос. науч. конф. с международным участием «Сорбенты как фактор качества жизни и здоровья». Белгород: изд-во БелГУ, 2004. С. 46–49.

- 6. Везенцев А.И. Сорбционная очистка почв от тяжелых металлов // Научные ведомости БелГУ. Серия Естественные науки. 2008. Т. 3. № 6. С. 172 175.
- Серия Естественные науки. 2008. Т. 3, № 6. С. 172 175. 7. Зверевич В.В. Перов В.А. Основы обогащения полезных ископаемых. – М.: Изд-во «Недра», 1971. – 216 с.
 - 8. Ковальский В.В. Геохимическая экологи я. М.: Наука, 1974. 150 с.

MONTMORILLONITE CLAYS AS SORBENTS FOR CLEANING SOIL FROM COPPER IONS

L.F. Peristaya, A.I. Vezentsev, V.V. Skorbach, V.A. Peristy, L.V. Miroshnichenko

Belgorod State National Research University, 85 Pobedy St, Belgorod, 308015, Russia

E-mail: peristaya@bsu.edu.ru

In this paper we set the upper threshold concentration of excess copper in the universal peat soil. Using clay of the deposit "Polyana" in Belgorod region as a sorbent allows to reduce the concentration of copper in polluted peaty soil. There was revealed a negative effect of excessive copper copper on the growth and development of autonomic system of radish.

Key words: clay, sorbents, removal, heavy metals, sorption purification, copper ions.