

УДК 517.9

О ЧИСЛЕННОМ РЕШЕНИИ УРАВНЕНИЙ ВОЛЬТЕРРА-ФРЕДГОЛЬМА С ДРОБНЫМИ И ЧАСТНЫМИ ИНТЕГРАЛАМИ

ON NUMERICAL SOLUTION OF VOLTERRA-FREDHOLM EQUATIONS WITH FRACTIONAL AND PARTIAL INTEGRALS

В.А. Калитвин V. A. Kalitvin

Липецкий государственный педагогический университет, Россия, 398020, г. Липецк, ул. Ленина, д. 42 Lipetsk State Pedagogical University, 42, Lenina St, Lipetsk, 398020, Russia E-mail: kalitvin@mail.ru

Ключевые слова: интегральное уравнение, интегральное уравнение Вольтерра - Фредгольма с частными интегралами, метол механических квалратур, оценка погрешности

Key words: integral equation, Volterra-Fredholm equation with partial integrals, mechanical quadraturs method, error estimate

Аннотация. Изучается применение метода механических квадратур к решению линейных интегральных уравнений Вольтерра-Фредгольма с частными интегралами и с неограниченным ядром. Рассматривается алгоритм численного решения и его сходимость.

Resume. The application of mechanical quadraturs method to solution of Volterra-Fredholm linear integral equations with partial integrals and with unbonded kernel is studied. The algorithm for numerical solution and its convergence is studied.

Постановка задачи

В [1] дано обоснование численного решения интегральных уравнений Вольтерра с частными интегралами и непрерывными ядрами методом механических квадратур. В [2,3] рассмотрены задачи механики сплошных сред, которые приводятся к интегральным уравнениям Вольтерра-Фредгольма с частными интегралами с непрерывными и с неограниченными ядрами. В связи с этим в данной работе метод механических квадратур применяется к решению линейных интегральных уравнений Вольтерра-Фредгольма с частными интегралами, одно из ядер которого не ограничено.

Рассматривается интегральное уравнение Вольтерра-Фредгольма

$$x(t,s) = \int_0^t \frac{x(\tau,s)}{(t-\tau)^\alpha} d\tau + \int_0^1 m(t,s,\sigma)x(t,\sigma)d\sigma + f(t,s) \equiv (Vx)(t,s) + f(t,s)$$
(1)

с частными интегралами, где $(1 < \alpha < 1, t, s \in [0,1], m(t,s,\sigma)$ и f(t,s) — заданные непрерывные функции, а интегралы понимаются в смысле Лебега. При $m(t,s,\sigma)=0,\ s=0,\ x(t,0)=y(t)$ и f(t,0) = h(t) уравнение (1) является уравнением Абеля.

Отметим, что применение метода механических квадратур к уравнению (1) требует обоснования, так как оператор V в правой части уравнения (1) не является вполне непрерывным, а известные обоснования метода механических квадратур для обычных интегральных уравнений используют полную непрерывность интегральных операторов в этих уравнениях.

Переход от уравнения (1) к уравнению с частными интегралами и непрерывными ядрами

Уравнение (1) имеет единственное решение в пространстве C(D) непрерывных на $D = [0,1] \times [0,1]$ функций, если в C(D) обратим оператор I-M [4,5], где оператор M определяется равенством

$$(Mx)(t,s) = \int_{0}^{1} m(t,s,\sigma)x(t,\sigma)d\sigma.$$

Будем предполагать обратимость в C(D) оператора I-M.

Учитывая представление резольвенты для уравнения

$$\varphi(t) = \int_{0}^{t} \frac{\varphi(\tau)}{(t-\tau)^{\alpha}} d\tau + h(t) (0 < \alpha < 1)$$

в виде

$$R(t) = \sum_{n=1}^{\infty} \frac{(\Gamma(1-\alpha)t^{1-\alpha})^n}{t\Gamma(n(1-\alpha))}$$

[6, с. 176], где через $\Gamma(z)$ обозначена гамма-функция

$$\Gamma(z) = \int_{0}^{\infty} y^{z-1} e^{-y} dy,$$

уравнение (1) запишем в виде

$$x(t,s) = \int_{0}^{1} m(t,s,\sigma)x(t,\sigma)d\sigma + \int_{0}^{t} \int_{0}^{1} R(\tau)m(\tau,s,\sigma)x(\tau,\sigma)d\tau d\sigma + g(t,s),$$
(2)

где

$$g(t,s) = f(t,s) + \int_{0}^{t} R(\tau)f(\tau,s)d\tau.$$

Оператор V_{δ} определим равенством

$$(V_{\mathcal{S}}x)(t,s) = \int_{0}^{1} m(t,s,\sigma)x(t,\sigma)d\sigma + \int_{\mathcal{S}}^{t} \int_{0}^{1} R(\tau)m(\tau,s,\sigma)x(\tau,\sigma)d\tau d\sigma,$$

где $\delta > 0$. При сделанных предположениях уравнение Вольтерра-Фредгольма

$$x(t,s) = (V_{\delta}x)(t,s) + g(t,s)$$
(3)

с частными интегралами имеет единственное решение \mathfrak{X}_{δ} в C(D) [4,5].

Покажем, что при $\delta \to 0$ решение χ_{δ} уравнения (3) стремится к решению уравнения (2).

Имеем

$$x(t,s) - x_{\delta}(t,s) = \int_{0}^{1} m(t,s,\sigma)[x(t,\sigma) - x_{\delta}(t,\sigma)]d\sigma + \int_{0}^{\delta} \int_{0}^{1} R(\tau)m(\tau,s,\sigma)x(\tau,\sigma)d\tau d\sigma + \int_{0}^{\delta} \int_{0}^{1} R(\tau)m(\tau,s,\sigma)[x(\tau,\sigma) - x_{\delta}(\tau,\sigma)]d\tau d\sigma.$$

$$y(t,s) = \int_{0}^{1} m(t,s,\sigma)y(t,\sigma)d\sigma + \int_{s}^{t} \int_{0}^{1} R(\tau)m(\tau,s,\sigma)y(\tau,\sigma)d\tau d\sigma + h(t,s), \tag{4}$$

где

$$h(t,s) = \int_{0}^{\delta} \int_{0}^{1} R(\tau) m(\tau,s,\sigma) x(\tau,\sigma) d\tau d\sigma.$$
 (5)

Принимая во внимание, что в (5) $_x$ — фиксированная функция из C(D) и учитывая абсолютную непрерывность интеграла Лебега в правой части равенства (5), заключаем, что в C(D) $h \to 0$ при $\delta \to 0$. Отсюда и единственности решения уравнения (4) в C(D) вытекает, что в C(D) $y \to 0$ при $\delta \to 0$. Следовательно, в C(D) $x_\delta \to x$ при $\delta \to 0$.

Оценка погрешности

Условие $x_{\delta} \to x$ при $\delta \to 0$ позволяет принять за приближенное решение уравнения (2) (уравнения (1)) функцию x_{δ} при достаточно малом $\delta \geq 0$. Оценка погрешности такой замены совпадает с оценкой решения уравнения (4).

Пусть обратный оператор $(I-M)^{-1}$ допускает представление

$$(I - M)^{-1} x(t, s) = x(t, s) + \int_{0}^{1} r_{m}(t, s, \sigma) x(t, \sigma) d\sigma,$$
 (6)

где резольвента $r_m(t,s,\sigma)$ есть непрерывная по совокупности переменных функция. Применяя равенство (6), уравнение (4) запишем в виде

$$y(t,s) = \int_{s}^{t} R(\tau) m_1(t,s,\tau,\sigma) y(\tau,\sigma) d\tau d\sigma + h_1(t,s),$$

где

$$m_1(t,s,\tau,\sigma) = \int_0^1 m(t,s,\sigma_1)m(\tau,\sigma_1,\sigma)d\sigma_1,$$

$$h_1(t,s) = h(t,s) + \int_0^1 m_1(t,s,\tau,\sigma)h(t,\sigma)d\sigma.$$

Пусть x — решение уравнения (2) и $\|x\| \le X$, где X — некоторое положительное число. Из (5) имеем

$$\|h\| \le X \int_{0.0}^{\delta.1} |R(\tau)m(\tau,s,\sigma)| d\tau d\sigma.$$

Учитывая абсолютную непрерывность последнего интеграла, выберем для произвольного $\varepsilon_1>0$ такое $\delta>0$, чтобы

$$\iint_{0.0}^{\delta.1} |R(\tau)m(\tau,s,\sigma)| d\tau d\sigma < \varepsilon_1 X.$$

Тогда $||h|| < \varepsilon_1$.

Рассмотрим интегральное уравнение

$$z(t,s) = \widetilde{M} \int_{s_0}^{t_1} R(\tau) z(\tau,\sigma) d\tau d\sigma + \varepsilon_1 \equiv (R_{\delta} z)(t,s) + \varepsilon_1, \tag{6}$$

где число $\widetilde{M} > 0$ выбрано так, что $|m(t,s,\sigma)| \leq \widetilde{M}$.

Уравнение (6) имеет единственное решение в C(D), в виду равенства нулю спектрального радиуса действующего в пространстве C(D) оператора R_{δ} . В силу [3-5] единственное решение уравнения (6) может быть записано в виде

$$z(t,s) = \varepsilon_1 \int_{s_0}^{t_1} r_{\delta}(t,s,\tau,\sigma) d\tau d\sigma + \varepsilon_1 = \varepsilon_1 (1 + \int_{s_0}^{t_1} r_{\delta}(t,s,\tau,\sigma) d\tau d\sigma), \tag{7}$$

где $r_{\delta}(t,s, au,\sigma)$ — резольвента интегрального уравнения (6). Из равенства (7) имеем

$$||z|| \le \varepsilon_1 (1 + \sup_{(t,s)} \int_{s_0}^{t_1} |r_s(t,s,\tau,\sigma)| \, d\pi d\sigma). \tag{8}$$

Полагая в (8)

$$\varepsilon = \varepsilon_1 \max(1 + \sup_{(t,s)} \int_{\delta 0}^{t} |r_{\delta}(t,s,\tau,\sigma)| d\tau d\sigma), \tag{9}$$

получим $\|z\| < \varepsilon$. Следовательно, $\|y\| \le \|z\| < \varepsilon$.

Таким образом, для получения оценки погрешности $\|y\|$ достаточно оценить X и

$$Y_{\mathcal{S}} = \sup_{(t,s)} \int_{\mathcal{S}}^{t} |r_{\mathcal{S}}(t,s,\tau,\sigma)| d\tau d\sigma.$$
 (10)

Для оценки числа X уравнение (2) запишем в виде

$$x(t,s) - \int_{0}^{1} m(t,s,\sigma)x(t,\sigma)d\sigma = \int_{0}^{t} \int_{0}^{1} R(\tau)m(\tau,s,\sigma)x(\tau,\sigma)d\tau d\sigma + g(t,s)$$

и к обеим частям последнего уравнения применим оператор $(I-M)^{-1}$. В результате получим **уравнение**

$$x(t,s) = \int_{0}^{t} \int_{0}^{1} R(\tau) [m(\tau,s,\sigma) + m_1(t,s,\tau,\sigma)] x(\tau,\sigma) d\tau d\sigma + g_1(t,s) \equiv (Rx)(t,s) + g_1(t,s), \tag{11}$$

где

$$m_1(t,s,\tau,\sigma) = \int_0^1 r_m(t,s,\sigma_1) m(\tau,\sigma_1,\sigma) d\sigma_1,$$

$$g_1(t,s) = g(t,s) + \int_0^1 r_m(t,s,\sigma_1)g(t,\sigma_1)d\sigma_1,$$

а $r_{\scriptscriptstyle m}(t,s,\sigma_{\scriptscriptstyle \parallel})$ — резольвента интегрального уравнения x-Mx=g.

Так как спектральный радиус оператора R из уравнения (11) равен нулю, то уравнение (11) имеет единственное решение в C(D) и оно может быть записано в виде $x = (I - R)^{-1} g_1$. Если теперь известна оценка нормы оператора $(I-R)^{-1}$, то $\|x\| \leq \|(I-R)^{-1}\| \cdot \|g_1\|$. Таким образом,

$$X \le \|(I - R)^{-1}\| \cdot \|g_1\|. \tag{12}$$

Отметим, что оценка нормы оператора $(I-R)^{-1}$ представляет собой весьма сложную задачу, однако для некоторых классов ядер $m(t,s,\sigma)$ функция $r_m(t,s,\sigma)$, следовательно, и функция $R(\tau)[m(\tau,s,\sigma)+m_1(t,s,\tau,\sigma)]$ выписываются явно, а оценка для нормы оператора $\left(I-R\right)^{-1}$ может быть получена с использованием рядов Неймана.

Для оценки числа Y_δ может быть использована любая оценка сверху резольвенты интегрального уравнения (6). В силу (6) и [3-5] Y_{δ} вычисляется по формуле (10), где

$$r(t,s,\tau,\sigma) = \sum_{p=1}^{\infty} n^{(p)}(t,s,\tau,\sigma), \tag{13}$$

$$n^{(1)}(t,s,\tau,\sigma) = MR(\tau), n^{(p)}(t,s,\tau,\sigma) = \int_{\tau}^{t} MR(u) n^{(p-1)}(u,v,\tau,\sigma) du dv$$

 $(p = 2,3,\cdots)$. Из (10) вытекает, что $Y_{\delta} \leq Y$, где

$$Y = \sup_{(c,d)} \int_{0}^{t} |r(t,s,\tau,\sigma)| d\tau d\sigma, \tag{14}$$

а $r(t, s, \tau, \sigma)$ определяется равенством (13).

Из приведенных рассуждений видно, что за приближенное решение уравнения (2) можно принять решение уравнения (3) при достаточно малом $\delta > 0$. Действительно, для произвольного $\varepsilon_1 > 0$ выберем $\delta \ge 0$ настолько малым, чтобы выполнялось неравенство

$$\iint_{0}^{\delta_1} |R(\tau)m(\tau,s,\sigma)| d\tau d\sigma < \frac{\varepsilon_1}{X},$$

где X удовлетворяет неравенству (12). В силу (9) и (14)

$$||x - x_{\delta}|| = ||y|| \le \varepsilon_1 \max(X, 1 + \sup_{(t,s)} \int_{0.0}^{t-1} |r(t,s,\tau,\sigma)| \, d\tau d\sigma). \tag{15}$$

Тогда $x(t,s) \approx x_{\delta}(t,s)$ с погрешностью, определяемой правой частью неравенства (15).

Численное решение уравнения (2)

В силу приближенного равенства $x(t,s) \approx x_{\delta}(t,s)$ при численном решении уравнения (2) может быть использовано численное решение уравнения (3).

Уравнение (3) имеет непрерывные на $[\mathcal{S},1] \times [0,1]$ ядра и непрерывную функцию g(t,s). Для численного решения этого уравнения может быть использован метод механических квадратур, рассмотренный в [1].

Отрезки $[\delta,1]$ и [0,1] разобъем на части точками

$$t_p = \delta + ph(p = 0,1,...,P, \delta + Ph \le 1 < (P+1)h), s_q = qg(q = 0,1,...,Q, Qg \le d < (Q+1)g)$$

соответственно. Подставляя $t=t_p\,$ и $s=s_q\,$ в (3) и заменяя интегралы по формулам

$$\int_{0}^{1} m(t_{p}, s_{q}, \sigma) x(t_{p}, \sigma) d\sigma = g \sum_{j=0}^{Q} \beta_{jq} m_{pqj} x(t_{p}, s_{j}) + r_{pq}^{m},$$
(16)

$$\int_{\delta}^{t_p} \int_{0}^{1} R(\tau) m(\tau, s_q, \sigma) x(\tau, \sigma) d\tau d\sigma = hg \sum_{i=0}^{p} \sum_{j=0}^{Q} \gamma_{pqij} n_{pqij} x(t_i, s_j) + r_{pq}^n, \tag{17}$$

где $m_{pqj} = m(t_p, s_q, s_j)$, $n_{pqtj} = R(t_i)m(t_i, s_q, s_j)$ и r_{pq}^m , r_{pq}^m — остатки этих формул, получим систему

$$x(t_{0}, s_{0}) = g(t_{0}, s_{0}), x(t_{p}, s_{0}) = g(t_{p}, s_{0}), x(t_{0}, s_{q}) = g \sum_{j=0}^{Q} \beta_{jq} m_{0qj} x(t_{0}, s_{j}) + g(t_{0}, s_{q}) + r_{0q}^{m},$$

$$x(t_{p}, s_{q}) = g \sum_{j=0}^{Q} \beta_{jq} m_{pqj} x(t_{p}, s_{j}) + hg \sum_{i=0}^{p} \sum_{j=0}^{Q} \gamma_{pqij} n_{pqij} x(t_{i}, s_{j}) + g(t_{p}, s_{q}) + r_{pq}^{m} + r_{pq}^{n}$$

$$(18)$$

$$(p = 1, \dots P; q = 1, \dots Q).$$

Отбрасывая в (18) остатки, получим систему уравнений для приближенных значений x_{0q}, x_{pq} функции x в точках $(t_0, s_q), (t_p, s_q)$ ($p=1, \ldots, P; q=1, \ldots, Q$). Пусть δ_{0q}, δ_{pq} — погрешности, которые могут быть получены при вычислениях x_{0q}, x_{pq} . Тогда неизвестные x_{0q}, x_{pq} удовлетворяют системе уравнений

$$x_{0q} = g \sum_{j=0}^{Q} \beta_{jq} m_{0qj} x_{0j} + g_{0q} + \delta_{0q}, \ x_{pq} = g \sum_{j=0}^{Q} \beta_{jq} m_{pqj} x_{pj} + hg \sum_{i=0}^{p} \sum_{j=0}^{Q} \gamma_{pqij} n_{pqij} x_{ij} + g_{pq} + \delta_{pq}$$
(19)

$$(p=1,...,P;q=1,...,Q)$$
, где $g_{0q}=g(t_0,s_q)$, $g_{pq}=g(t_p,s_q)$.

Таким образом, при всех достаточно малых h и g приближенное решение \mathcal{X}_{pq} может быть найдено по формулам (19), причем для каждого заданного $\, arepsilon \! > \! 0 \,$ существуют такие $\, h_{\! 0} \,$ и $\, g_{\! 0} \,$, что

$$|x_{pq} - x(t_p, s_q)| < \varepsilon \ (p = 0, 1, \dots, P; q = 0, 1, \dots, Q)$$

для $h \le h_0$ и $g \le g_0$, если выполнении следующие условия:

- а) погрешности r_{pq}^m и r_{pq}^n квадратурной формулы (16) и кубатурной формулы (17) стремятся к нулю равномерно относительно p,q при $h,g \to 0$;
 - б) существуют такие числа A и B, что выполняются неравенства

$$|\beta_{ia}| \le A < \infty, |\gamma_{naii}| \le B < \infty;$$

- в) погрешности $\delta_{0q},~\delta_{pq}$ стремятся к нулю равномерно относительно p,q при h,g o 0;
- г) оператор I-M обратим в C(D), а система (19) имеет единственное решение при всех достаточно малых h и g.

При сделанных предположениях аналитическое приближение $x_{pq}(t,s)$ решения x(t,s)уравнения (3) естественно определить равенством

$$x_{pq}(t,s) = g \sum_{i=0}^{q} \beta_{jq} m(t,s,s_j) x_{pj} + hg \sum_{i=0}^{p} \sum_{j=0}^{q} \gamma_{pqij} R(t_i) m(t_i,s,s_j) x_{ij} + g(t,s).$$
 (20)

В этом случае $\sup_{[\delta,1]\mapsto[0,1]} |x_{pq}(t,s)-x(t,s)| \to 0$ при $p,q\to\infty$.

Формулы (19) и (20) получены для уравнения (3). Однако за численное и аналитическое решения уравнения (2) при достаточно малом $\delta > 0$ можно принять решения уравнения (3), определенные на $[\delta,1]\times[0,1]$ по формулам (19) и (20) соответственно, так как в силу раздела 2 решение χ_{δ} уравнения (3) стремится к решению χ_{δ} уравнения (2) при $\delta \to 0$.

Благодарности. Работа поддержана Минобрнауки России (задание № 2015/351, НИР № 1815).

Список литературы

- 1. Kalitvin V.A. Numerical Solution of Linear Volterra Equations with Partial Integrals // Journal of Mathematical Sciences, July 2015. V. 208, 2. Pp. 168-173.
- 2. Appell J.M., Kalitvin A.S., Zabrejko P.P. Partial Integral Operators and Integro-Differential Equations. New York-Basel: Marcel Dekker, 2000. 560 pp.
- 3. Калитвин А.С. Линейные операторы с частными интегралами. Воронеж: ЦЧКИ, 2000. 252 c.

- 4. Калитвин А.С., Калитвин В.А. Интегральные уравнения Вольтерра и Вольтерра-Фредгольма с частными интегралами. Липецк: ЛГПУ, 2006. 177с.
- 5. Калитвин А.С., Фролова Е.В. Линейные уравнения с частными интегралами. С-теория. Липецк: ЛГПУ, 2004. 195 с.
 - 6. Смирнов В.И. Курс высшей математики. Т.4. Часть 1. М.: Наука, 1974. 336 с.

References

- 1. Kalitvin V.A. Numerical Solution of Linear Volterra Equations with Partial Integrals // Journal of Mathematical Sciences, July 2015. V. 208, 2. Pp. 168-173.

 2. Appell J.M., Kalitvin A.S., Zabrejko P.P. Partial Integral Operators and Integro-Differential
- Equations. New York-Basel: Marcel Dekker, 2000. 560 pp.
 - 3. Kalitvin A.S. Linear operators with partial integrals. Voronezh: CHKI, 2000. 252 pp.
- 4. Kalitvin A.S., Kalitvin V.A. Integral equations of Volterra and Volterra-Fredholm with partial integrals. Lipetsk: LGPU, 2006. 177 pp.
- 5. Kalitvin A.S., Frolova E.V. Linear equations with partial integrals. C-theory. Lipetsk: LGPU, 2004. 195 pp.
 - 6. Smirnov V.I. Course of higher mathematics. V. 1. P. 1. M.: The Science, 1974. 336 pp.