

УДК 517.9

ДВЕ ЗАДАЧИ ДЛЯ НЕЛИНЕЙНЫХ ИНТЕГРО-ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ БАРБАШИНА С ДРОБНОЙ ЧАСТНОЙ ПРОИЗВОДНОЙ

TWO PROBLEMS FOR NONLINEAR BARBASHIN INTEGRO-DIFFERENTIAL EOUATIONS WITH FRACTIONAL PARTIAL DERIVATIVE

А.С. Калитвин, В.А. Калитвин A.S. Kalitvin, V.A. Kalitvin

Липецкий государственный педагогический университет, Россия, 398020, г. Липецк, ул. Ленина, д. 42 Lipetsk State Pedagogical University, 42, Lenina St, Lipetsk, 398020, Russia E-mail: kalitvinas@mail.ru; kalitvin@mail.ru

Ключевые слова: интегро-дифференциальное уравнение, дробная частная производная, интегральное уравнение

Key words: integro-differential equation, fractional partial derivative, integral equation

Аннотация. Получены условия существования и единственности решения весовой задачи типа Коши и задачи Коши для нелинейных интегро – дифференциальных уравнений Барбашина с дробной частной производной в смысле Римана-Лиувилля и в смысле Капуто.

Resume. The existence and uniquenesse conditions of solution of weight Cauchy type problem and of Cauchy problem for nonlinear Barbashin integro-differential equations with fractional partial derivative in Riemann-Lioville and Caputo sense are obtained.

Введение и постановка задачи

Будем рассматривать нелинейное интегро-дифференциальное уравнение

$$(D_{a+,t}^{\alpha}x)(t,s) = c(t,s,x(t,s)) + \int_{c}^{d} m(t,s,\sigma,x(t,\sigma))d\sigma + f(t,s)$$
(1)

с левосторонней дробной частной производной по t порядка α в смысле Римана-Лиувилля, где $0 < \alpha \le 1$, $(t,s) \in D = [a,b] \times [c,d]$, c(t,s,u), f(t,s) и $m(t,s,\sigma,u)$ — заданные и непрерывные на $F = D \times (-\infty, +\infty)$, D и $G = D \times [c, d] \times (-\infty, +\infty)$ соответственно функции, а интеграл понимается в смысле Лебега.

При аналогичных предположениях о заданных функциях рассматривается нелинейное интегро-дифференциальное уравнение

$$\binom{C}{D_{\alpha+,t}^{\alpha}}x(t,s) = c(t,s,x(t,s)) + \int_{c}^{d} m(t,s,\sigma,x(t,\sigma))d\sigma + f(t,s)$$
(2)

с левосторонней дробной частной производной по t порядка α в смысле Капуто, где $0 < \alpha \le 1$.

При $\alpha = 1$ левосторонние дробные частные производные в левой части уравнений (1) и (2) совпадают с обычной частной производной по t функции x(t,s), если $x'_t(t,s)$ существует, а сами уравнения совпадают с нелинейным интегро-дифференциальным уравнением Барбашина (ИДУБ)

$$\frac{\partial x(t,s)}{\partial t} = c(t,s,x(t,s)) + \int_{c}^{d} m(t,s,\sigma,x(t,\sigma))d\sigma + f(t,s). \tag{3}$$

В связи с этим нелинейные уравнения (1) и (2), при $0 < \alpha < 1$, назовем нелинейными ИДУБ с дробной частной производной по t порядка lpha в смысле Римана-Лиувилля и Капуто соответственно. При $c(t,s,u)\equiv c(t,s)u$, $m(t,s,\sigma,u)\equiv m(t,s,\sigma)u$ и $0\leq\alpha\leq 1$ уравнения (1) и (2) являются линейными ИДУБ с дробной частной производной.

Основы теории начальных и краевых задач для линейных ИДУБ построены в [1]. При этом изучаемые задачи интерпретировались как начальные или двухточечные задачи для дифференциальных уравнений первого порядка в банаховых пространствах с решениями, понимаемыми в классическом смысле, или сводились к интегральным уравнениям.

Условия однозначной разрешимости нелинейного ИДУБ (3)локальной \mathbf{c} c(t, s, u) = c(t, s)u и при заданном начальном условии

$$x(t_0, s) = \varphi(s) \tag{4}$$

приведены в [1]. При этом задача (3)/(4) интерпретируется как задача Коши

$$x'(t) = A(t)x(t) + f(t), x(t_0) = \varphi(s)$$
(5)

в банаховом пространстве X, где вектор-функции x(t) и f(t) определяются равенствами x(t) := x(t,s) и f(t) := f(t,s), оператор-функция A(t) имеет вид

$$A(t)y(s) = c(t,s)y(s) + \int_{c}^{d} m(t,s,\sigma,y(\sigma))d\sigma,$$
(6)

а производная x'(t) понимается в смысле Фреше.

При применении метода интегральных уравнений задача (3)/(4) сводится к нелинейному интегральному уравнению

$$x(t,s) = (Bx)(t,s) + g(t,s),$$
 (7)

где

$$(Bx)(t,s) = \int_{t_0}^t c(\tau, s, x(\tau, s)) d\tau + \int_{t_0}^t \int_{c}^d m(\tau, s, \sigma, x(\tau, \sigma)) d\sigma d\tau,$$

a

$$g(t,s) = \varphi(s) + \int_{t_0}^{t} f(\tau,s) d\tau.$$

Если теперь задача (3)/(4) эквивалентна в банаховом функциональном пространстве Eуравнению (7), то единственное решение в E имеет и задача (3)/(4).

Метод интегральных уравнений позволяет свести изучение ИДУБ (1) и (2) с левосторонней дробной частной производной по t порядка α (0 < α < 1) к нелинейным интегральным уравнениям Вольтерра с частными интегралами.

Дробные частные интегралы и производные

Пусть $D = [a,b] \times [c,d]$ — конечный прямоугольник, C(D) — пространство непрерывных на D функций f(t,s), $A_tC(D)$ — пространство непрерывных на D функций f(t,s), абсолютно

непрерывных по $t \in [a,b]$ при каждом $s \in [c,d]$, $C(L^1)$ — пространство измеримых на Dфункций g(t,s), которые непрерывны по $s \in [c,d]$ как функции со значениями в $L^1 = L^1([a,b])$, $C_{\gamma}(D)$ — множество непрерывных на $(a,b] \times [c,d]$ функций x(t,s), для которых при некотором $\gamma > 0$ функция $(t-a)^{\gamma} x(t,s)$ принадлежит C(D), а норма определяется равенством

$$||x|| = \sup_{(t,s)} |(t-a)^{\gamma} x(t,s)|,$$

и пусть C([c,d]) — пространство непрерывных на отрезке [c,d] функций.

Хорошо известно, что $C([c,d]), C(D), A_c(CD), C(L^1), C_{\nu}(D)$ и $C(L^1)$ являются банаховыми пространствами.

При $\alpha > 0$ и $g \in C(L^1)$ левосторонний дробный частный интеграл по t Римана-Лиувилля порядка α определяется равенством

$$(I_{a+,t}^{\alpha}g)(t,s) = \frac{1}{\Gamma(\alpha)} \int_{\alpha}^{t} \frac{g(\tau,s)}{(t-\tau)^{1-\alpha}} d\tau, t > \alpha,$$
(8)

где $\Gamma(z)$ — гамма функция. Дробные частные интегралы определены для любой функции $g\in C(L^1)$ и обладают полугрупповым свойством: $I_{a+,l}^{\alpha}I_{a+,l}^{\beta}g=I_{a+,l}^{\alpha+\beta}g$.

Через $I^{\alpha}_{a+l}(C(L^1))$, где $\alpha>0$, обозначим множество функций f(t,s), допускающих представление $f(t,s) = (I_{\sigma+t}^{\alpha}\varphi)(t,s)$, где $\varphi \in C(L^1)$.

Аналогично теореме 2.3 из [2], $f \in I^{\alpha}_{a+t}(C(L^1))$ точно тогда, когда выполнены условия: $f_{1-\alpha} = I_{a+,t}^{1-\alpha} f \in A_t C(D), f_{1-\alpha}(a,s) = 0.$

Левосторонняя дробная частная производная по t Римана – Лиувилля порядка lpha $(0 < \alpha < 1)$ функции f(t, s), по определению, имеет вид

$$(D_{a+,t}^{\alpha}f)(t,s) = \frac{1}{\Gamma(1-\alpha)} \frac{\partial}{\partial t} \int_{a}^{t} \frac{f(\tau,s)}{(t-\tau)^{\alpha}} d\tau, t > a.$$
 (9)

Так же, как в [2, теорема 2.3, лемма 2.2], доказывается, что если $f \in A_tC(D)$ и $0 < \alpha < 1$, то при каждом $s \in [c,d]$ $(D^{\alpha}_{a+,t}f)(t,s)$ существует почти при всех $t \in [a,b]$ и допускает представление

$$(D_{a+,t}^{\alpha}f)(t,s) = \frac{1}{\Gamma(1-\alpha)} \left(\frac{f(a,s)}{(t-a)^{\alpha}} + \int_{a}^{t} \frac{f'_{t}(\tau,s)}{(t-\tau)^{\alpha}} d\tau \right), \tag{10}$$

причем $D_{a+t}^{\alpha}f\in C(L^1)$. Из (9) и (10) следует, что линейный оператор D_{a+t}^{α} действует из $A_tC(D)$ в $C(L^1)$ и ограничен.

дробными частными интегралами и производными описывается следующими равенствами:

$$D_{a+t}^{\alpha} I_{a+t}^{\alpha} g = g; (11)$$

$$I_{a+,t}^{\alpha} D_{a+,t}^{\alpha} f = f \ (f \in I_{a+,t}^{\alpha} (C(L^{1}));$$
(12)

$$(I_{a+,t}^{\alpha}D_{a+,t}^{\alpha}f)(t,s) = f(t,s) - \frac{f_{1-\alpha}(a,s)}{\Gamma(\alpha)}(t-a)^{\alpha-1},$$
(13)

если $0 < \alpha < 1$, $f \in C(L^1)$ и $I_{\alpha+1}^{1-\alpha} f \in A_t C(D)$;

$$(I_{a+,t}^{\alpha}D_{a+,t}^{\alpha}g)(t,s) = g(t,s) - \frac{(I_{a+,t}^{1-\alpha}g)(a+,s)(t-a)^{\alpha-1}}{\Gamma(\alpha)},$$
(14)

если $g \in C(D_0)$ и $(I_{a+,t}^{1-\alpha}g)(t,s) \in C(D_0)$, где $D_0 = (a,b] \times [c,d]$.

Доказательство равенств (11)-(14) производится с применением схемы доказательства теоремы 2.4 из [2].

Дробная частная производная по t порядка lpha в смысле Капуто определяется равенством

$$\binom{C}{D_{q+t}^{\alpha}}f(t,s) = \binom{D_{q+t}^{\alpha}}{(f-g)(t,s)}$$
, $\partial e g(t,s) \equiv f(a,s)$.

Если $0 < \alpha < 1$ и $f \in A_c(D)$, то аналогично [3, лемма 2.22] доказывается равенство

$$(I_{a+t}^{\alpha})(^{C}D_{a+t}^{\alpha}f)(t,s) = f(t,s) - f(a,s).$$
(15)

Нелинейное интегро-дифференциальное уравнение Барбашина с дробной частной производной в смысле Римана-Лиувилля

Рассмотрим ИДУБ (1) с дробной частной производной по t порядка $\mathcal C$ в смысле Римана-Лиувилля, где $0 < \alpha \le 1$, c, f, m — заданные непрерывные функции, а интеграл понимается в смысле Лебега. ИДУБ (1) с дополнительным условием

$$\lim_{t \to a^{+}} (t - a)^{1 - \alpha} x(t, s) = \varphi(s), \varphi \in C([c, d]),$$
(16)

назовем весовой задачей типа Коши. Под решением задачи (1)/(16) будем понимать функцию $x \in C_{1-\alpha}(D)$, удовлетворяющую уравнению (1) и весовому условию (16). Отметим, что при $\alpha=1$

условие (16) имеет вид $x(a,s)=\varphi(s)$, а задача (1)/(16) является задачей Коши для ИДУБ (3) с начальным условием $x(a,s) = \varphi(s)$, если существует $x_t'(t,s)$.

Пусть $0 < \alpha < 1$ и χ — решение задачи (1)/(16). Тогда при этом χ ИДУБ (1) обращается в тождество. Применяя к обеим частям этого тождества дробный частный интеграл (8) и учитывая равенства (11)-(13) и (16), получим тождество

$$x(t,s) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{1}{(t-\tau)^{1-\alpha}} \left(c(\tau,s,x(\tau,s)) + \int_{c}^{d} m(\tau,s,\sigma,x(\tau,\sigma)) d\sigma \right) d\tau + \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau,s)}{(t-\tau)^{1-\alpha}} d\tau + \varphi(s)(t-a)^{\alpha-1}.$$

$$(17)$$

Таким образом, при указанных условиях на функции c, m, f, φ решение χ задачи (1)/(16) удовлетворяет интегральному уравнению

$$x(t,s) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{c(\tau, s, x(\tau, s))}{(t-\tau)^{1-\alpha}} d\tau + \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{m(\tau, s, \sigma, x(\tau, \sigma))}{(t-\tau)^{1-\alpha}} d\sigma d\tau + \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau, s)}{(t-\tau)^{1-\alpha}} d\tau + \varphi(s)(t-a)^{\alpha-1},$$
(18)

под решением которого понимается функция $x \in C_{\gamma}(D)$, где $\gamma = 1 - \alpha$, удовлетворяющая уравнению (18). Отметим, что уравнение (18) можно рассматривать в $C_{\gamma}(D)$ при $\gamma = 1 - \alpha$, так как при $x \in C_{y}(D)$ каждое слагаемое правой части этого уравнения прнинадлежит $C_{y}(D)$.

Предположим теперь, что x(t,s) — решение уравнения (18) в $C_{\mathrm{l-}\alpha}(D)$. Тогда имеет место тождество (17). Применяя к обеим частям этого тождества дробную частную производную (9) и учитывая равенства (11)-(13) и $(D_{a+}^{\alpha}(t-a)^{\alpha-1})(x)=0$ [3, с. 71], получим тождество

$$(D_{a+,t}^{\alpha}x)(t,s) \equiv c(t,s,x(t,s)) + \int_{c}^{d} m(t,s,\sigma,x(t,\sigma))d\sigma + f(t,s),$$

причем $\lim_{t\to a^+}(t-a)^{1-\alpha}x(t,s)=\varphi(s)$. Поэтому x(t,s) — решение задачи (1)/(16) в $C_{1-\alpha}(D)$.

Пусть теперь $\alpha = 1$ и существует $x'_t(t,s)$. Тогда $C_{1-\alpha}(D) = C(D)$, а уравнение (1) с дополнительным условием (16) равносильно интегральному уравнению

$$x(t,s) = \int_{a}^{t} c(\tau, s, x(\tau, s)) d\tau + \int_{a}^{t} \int_{c}^{d} m(\tau, s, \sigma, x(\tau, \sigma)) d\sigma d\tau + \int_{a}^{t} f(\tau, s) d\tau + \varphi(s),$$

которое совпадает с уравнением (18) при $\alpha = 1$.

Следовательно, в $C_{1-\alpha}(D)$, где $0 < \alpha \le 1$, задача (1)/(16) эквивалентна уравнению (18). Из приведенных рассуждений вытекает

Теорема 1. Пусть $0 < \alpha \le 1$ и заданные функции c, f, m и φ непрерывны. Тогда в $C_{1-\alpha}(D)$ весовая задача типа Коши (1)/(16) эквивалентна интегральному уравнению (18).

Уравнение (18) запишем в виде x = Vx + g, где

$$(Vx)(t,s) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{c(\tau,s,x(\tau,s))}{(t-\tau)^{1-\alpha}} d\tau + \frac{1}{\Gamma(\alpha)} \int_{ac}^{td} \frac{m(\tau,s,\sigma,x(\tau,\sigma))}{(t-\tau)^{1-\alpha}} d\sigma d\tau, \tag{19}$$

a

$$g(t,s) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau,s)}{(t-\tau)^{1-\alpha}} d\tau + \varphi(s)(t-a)^{\alpha-1}.$$

Как отмечено выше, в условии теоремы 1 оператор V действует в $C_{\mathbf{l}-\alpha}(D)$, а функция $g\in C_{\mathbf{l}-\alpha}(D)$.

Будем предполагать, что функции $c(\tau,s,u)$ и $m(\tau,s,\sigma,u)$, где $u\in (-\infty,+\infty)$, удовлетворяют условию Липшица:

$$|c(\tau, s, u) - c(\tau, s, v)| \le c_0(\tau, s) |u - v|,$$

$$|m(\tau, s, \sigma, u) - m(\tau, s, \sigma, v)| \le m_0(\tau, s, \sigma) |u - v|,$$
(20)

где $c_0(au,s)$ и $m_0(au,s,\sigma)$ — непрерывные функции.

Через $V_{0}\,$ обозначим линейный оператор

$$(V_0 x)(t,s) = \frac{1}{\Gamma(\alpha)} \int_a^t \frac{c_0(\tau,s)}{(t-\tau)^{1-\alpha}} x(\tau,s) d\tau + \frac{1}{\Gamma(\alpha)} \int_a^t \int_c^t \frac{m_0(\tau,s,\sigma)}{(t-\tau)^{1-\alpha}} x(\tau,\sigma) d\sigma d\tau.$$
 (21)

Используя приведенные в [4-7] условия равенства нулю спектрального радиуса оператора Вольтерра с частными интегралами, которые могут быть применены к оператору (21), действующему в пространстве $C_{\mathbf{l}-\alpha}(D)$, получаем, что для действующего в $C_{\mathbf{l}-\alpha}(D)$ оператора V_0 спектральный радиус $r(V_0)=0$. Поэтому интегральное уравнение

$$x = V_0 x + g$$

имеет в пространстве $C_{\mathbf{l}-\alpha}(D)$ единственное решение. В виду оценки

$$|Vx+g-Vy-g| \le |V_0x+g-V_0y-g|$$

и обобщенного принципа сжимающих отображений [8] единственное решение в $C_{\text{I}-\alpha}(D)$ имеет и уравнение (18). В силу теоремы 1 единственное решение в $C_{\text{I}-\alpha}(D)$ имеет и задача (1)/(16). Таким образом, справедлива

Теорема 2. Пусть $0 < \alpha \le 1$, заданные функции c, f, m, φ непрерывны и функции ℓ и М уловлетворяют условию Липшица (20). Тогда весовая задача типа Коши (1)/(16) имеет единственное решение в $C_{1-\alpha}(D)$.

В заключение раздела отметим, что ИДУБ (1) рассматривалось при дополнительном условии на решение в точке \mathcal{Q} . Если же рассматривать дополнительное условие во внутренней точке интервала (a,b), то при $0 \le \alpha \le 1$ ситуация становится совершенно иной. Уже в случае линейного ИДУБ (1) получается задача Коши, которая приводится к линейному интегральному уравнению с операторами Вольтерра и Фредгольма с частными интегралами. В общем случае заданных непрерывных функций c, m, f, φ такие уравнения не являются нетеровыми [4,5]. Поэтому утверждение теоремы 2 для уравнения (1) с дополнительным условием во внутренней точке не имеет места.

Нелинейное интегро-дифференциальное уравнение Барбашина с дробной частной производной в смысле Капуто

рассматривать нелинейное интегро-дифференциальное уравнение (2) с левосторонней дробной частной производной по t порядка α в смысле Капуто, где $0 < \alpha \le 1$. ИДУБ (2) с дополнительным условием

$$x(a,s) = \varphi(s) \tag{22}$$

назовем задачей Коши. Под решением задачи (2)/(22) будем понимать функцию $x \in A_c(D)$, удовлетворяющую соотношениям (2)/(22).

Теорема 3. Пусть $0 < \alpha \le 1$, заданные функции c, f, m и φ непрерывны. Тогда в A,C(D) задача Коши (2)/(22) экивалентна нелинейному интегральному уравнению

$$x(t,s) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{c(\tau,s,x(\tau,s))}{(t-\tau)^{1-\alpha}} d\tau + \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \int_{c}^{d} \frac{m(\tau,s,\sigma,x(\tau,\sigma))}{(t-\tau)^{1-\alpha}} d\sigma d\tau + \frac{1}{\Gamma(\alpha)} \int_{a}^{t} \frac{f(\tau,s)}{(t-\tau)^{1-\alpha}} d\tau + \varphi(s).$$
(23)

Доказательство теоремы аналогично доказательству теоремы 1. К обеим частям уравнения (2) применяем дробный частный интеграл (8). С учетом (15) и (22) получаем интегральное уравнение (23), эквивалентное задаче Коши (2)/(22).

Теорема 4. Пусть $0 < \alpha \le 1$, заданные функции c, f, m и φ непрерывны и функции ℓ и М удовлетворяют условию Липшица (20). Тогда задача Коши (2)/(22) имеет единственное решение в $A_{c}C(D)$.

Доказательство. Непосредственно проверяется, что в условии теоремы каждое слагаемое правой части уравнения (23) принадлежит $A_{\mathcal{C}}(D)$. Поэтому оператор (19) действует из C(D) в $A_lC(D)$. Этот же оператор действует в C(D) и, как показано выше, уравнение x=Vx+g имеет единственное решение в C(D). Следовательно, уравнение (23) имеет единственное решение $x\in C(D)$, которое принадлежит $A_lC(D)$ в силу того, что каждое слагаемое правой части уравнения (23) принадлежит $A_lC(D)$. Учитывая вложение $A_lC(D)\subset C(D)$, получаем, что X — единственное решение уравнения (23) в $A_lC(D)$. Тогда задача (2)/(22), эквивалентная в $A_lC(D)$ этому уравнению, имеет единственное решение в $A_lC(D)$. Теорема доказана.

Благодарности. Работа поддержана Минобрнауки России (задание № 2015/351, НИР № 1815).

Список литературы

- 1. Appell J.M., Kalitvin A.S., Zabrejko P.P. Partial Integral Operators and Integro-Differential Equations. New York-Basel: Marcel Dekker, 2000. -560 p.
- 2. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.
- 3. Kilbas A.A., Srivastava N.M., Trujllo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-Francisco-Singapur-Sydney-Tokio: Elsevier Inc., 2006. 541 p.
- 4. Калитвин А.С. Линейные операторы с частными интегралами. Воронеж: ЦЧКИ, 2000. 252с.
- 5. Калитвин А.С., Калитвин В.А. Интегральные уравнения Вольтерра и Вольтерра Фредгольма с частными интегралами. Липецк: ЛГПУ, 2006. 177 с.
- 6. Калитвин А.С., Фролова Е.В. Линейные уравнения с частными интегралами. С-теория. Липецк: ЛГПУ, 2004. 195 с.
- 7. Kalitvin A.S. Spectral properties of partial operators of Volterra and Volterra-Fredholm type//ZAA, 1998. V. 17. 2. Pp. 297-309.
- 8. Красносельский М.А., Вайникко Г.М., Забрейко П.П., Рутицкий Я.Б., Стеценко В.Я. Приближенное решение операторных уравнений. М.: Наука, 1969. 456 с.

References

- 1. Appell J.M., Kalitvin A.S., Zabrejko P.P. Partial Integral Operators and Integro-Differential Equations. New York-Basel: Marcel Dekker, 2000. 560 pp.
- 2. Samko S.G., Kilbas A.A., Marichev O.I. Untegrals and derivatives of fractional degree and some their applications. Minsk: The Science and thechniques, 1987. 688 pp.
- 3. Kilbas A.A., Srivastava N.M., Trujllo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam-Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-Francisco-Singapur-Sydney-Tokio: Elsevier Inc., 2006. 541 pp.
 - 4. Kalitvin A.S. Linear operators with partial integrals. Voronezh: CHKI, 2000. 252 pp.
- 5. Kalitvin A.S., Kalitvin V.A. Integral equations of Volterra and Volterra-Fredholm with partial integrals. Lipetsk: LGPU, 2006. 177 pp.
- 6. Kalitvin A.S., Frolova E.V. Linear equations with partial integrals. C-theory. Lipetsk: LGPU, 2004. 195 pp.
- 7. Kalitvin A.S. Spectral properties of partial operators of Volterra and Volterra-Fredholm type//ZAA, 1998. V. 17. 2. Pp. 297-309.
- 8. Krasnosel'skij M.A., Vajnikko G.M., Zabrejko P.P., Rutitskij Ja.B., Sobolevskij P.E., Stetsenko V.Ja. Approximative solutions of operator equations. M.: The Science, 1969, 456 pp.