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Resume. The dynamic theory o f coherent X -ray radiation by divergent beam  of relativistic electrons crossing a 
single-crystal plate has been developed in Bragg scattering geometry. Numerical calculations of parametric X -ray and 
diffracted transition radiation angular densities has been made using their averaging by  two-dim ensional Gauss 
distribution as the angular distribution o f electrons in the beam. It has been shown that the influence o f divergence of 
the high-energy electron beam  on DTR is m uch stronger than on PXR.
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l.Introduction

In the physics of interaction of relativistic electrons with matter, to know spatial and angular 

distributions of particles in the incident beam is important for the experimental data interpretation. That 

is why working out the express methods to get information about the characteristics of the beam used in 

the experiment is actual problem. One of the approaches is to use different types of radiation excited by 

relativistic charged particles in matter. The possibility of the use of parametric X-radiation (PXR) for the 

diagnostics of relativistic electron beams recently was experimentally studied in [l, 2]. In [3] it was 

suggested to use PXR generated in a thin crystal to get operative information on spatial position of 

relativistic electron beam. The applicability of transition radiation (TR) of vacuum ultraviolet range to 

measure the electron beam cross dimensions was demonstrated in [4]. The authors of [5] offer the use of 

X-ray Cherenkov radiation by ultrarelativistic charged particles in the photon energy range, which 

includes К-absorption edges for some of the materials, to reveal the beam cross-dimensions.

In all of the works above listed, the beam parameters estimation was carried out in the framework 

of kinematic PXR theory, therefore studying the influence of dynamic effects on the characteristics of 

coherent radiation by relativistic electron beams remains an important task.

As known PXR appears due to the scattering of a relativistic electron Coulomb field on a system of 

parallel crystal atomic planes [6-8]. When a charged particle crosses the crystal plate surface, the 

transition radiation (TR) takes place [9, 10]. TR appearing on the border diffracts then on a system of 

parallel atomic planes of the crystal that forms DTR in a narrow spectral range [11-14]. DTR photons 

move near the Bragg scattering direction. The process of coherent X-ray radiation by a single relativistic 

electron in a crystal is described in the framework of the dynamical theory of x-rays diffraction in [15-18]. 

In these papers, the dynamic theory of coherent X-ray radiation generated by a relativistic electron in a 

crystal has been built for general case of asymmetric relative to the crystal (target) surface reflection of the 

electron Coulomb field. In this case, the system of the parallel reflecting atomic planes in the target can be 

located at arbitrarily given angle to the target surface. Under these conditions, coherent X-radiation in the 

direction of the Bragg scattering appears because of two coherent radiation mechanisms, nam ely PXR and 

DTR. In work [19] dynamical theory of coherent X-ray radiation generated in a single-crystal target by the 

finite divergence beam of relativistic electrons has been developed in the scattering Laue geometry. The 

significant difference of the effects of electron beam divergence in PXR and DTR is shown. The
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possibilities of practical use of DTR from a single-crystal target for indication of beam divergence of 

ultrarelativistic electrons are investigated.

In the present work, a dynamical theory o f coherent X-ray radiation generated in a single-crystal 

target by a divergent beam of relativistic electrons is developed in the scattering Bragg geometry. We have 

obtained the expressions describing spectral-angular distributions of PXR and DTR generated by a 

relativistic electron moving rectilinearly through the crystal plate at a predetermined angle relative to the 

axis of the electron beam. Further on the expression for the spectral-angular density of the radiation 

generated by an electron beam has been derived using the averaging of the radiation cross section over 

the angular distribution of electrons moving in straight lines in the beam. The influence of the electron 

beam divergence on spectral and angular characteristics of the coherent radiation has been 

investigated.One of the goals of this paper is to demonstrate a significant effect of reduction of DTR 

contribution under increase of the electron beam divergence. This effect allows investigating PXR of a 

relativistic electron beam in a single crystal target without DTR background. Another goal of this work is 

to define the possibilities of indication of electron beam divergence in accelerators with use of DTR. It is 

important to note that the effect of the beam divergence in the considered coherent radiation does not 

depend on cross sizes of the electron beam at the target-radiator.

2. Radiation amplitude

Let us consider a beam of relativistic electrons crossing a monocrystalline plate (Fig.i). Let us 

involve the angular variables l|/ , 0 and 0 O in accordance with the definition of relativistic electron

velocity V  and unit vectors in direction of momentum of the photon radiated in the direction near

electron velocity vector n and in the of Bragg scattering direction П :

v = ( i _ i Y~2 + xv е1 ^ = °

„  = ( l - ± e ’ )eI + 0o е!0о =О e1e2 =cos2QB 
? ? ?

ng =^l-^ -02je 2+ 0, e 20 = 0, (l)

0 -  is the radiation angle, counted from direction of axis of radiation detector e ,  , У  -  is the incidence

angle of an electron in the beam counted from the electron beam axis e x , в о ~~ is the angle between the

incident photon movement direction and axis e , , Vo ~~ is the divergence of the beam of radiating

electrons, у  = 1 / л/\ — V 2 - Lorentz-factor of the particle, (),, -  is the angle between the electron velocity 

and the system of crystallographic planes (Bragg angle), 8  -  is the angle between the input surface of the 

target and the crystallographic plane, k  = kn  , k g = &gn g - are the wave vectors of the radiated photons.

The angular variables are decomposed into the components parallel and perpendicular to the 

figure plane: 0 = 0 +©j_, 0 O = ®оц ®o± » У  =  Vy + •
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Let us consider electromagnetic processes in the crystalline medium characterized by complex 

permittivity

е (ю ,г)  = 1 + х ( ю , г ) ,  (2)

  f

where X(®>r ) = Xg (®)exP 0 g r ) , % (a ,r)  is the dielectric susceptibility,
g

Xg (®) = Xg (®) + r/.l (®) is the Fourier coefficient of the expansion of the dielectric susceptibility of the 

crystal in reciprocal lattice vectors g, and x 0(®) is the average dielectric susceptibility. The permeability 

of the substance in the range of relatively high X-ray frequencies we are interested in is unity, and the 

Maxwell equations in this case have the form

5D(r, t )
rot  Н(Г, t ) = 471 J(r, t) + ■

dt

rot  E(r, t ) = -
5H(r, t)

dt

The expansions of electric field strength e and magnetic field strength u  , as well as on the 

electric induction d of the field in the crystal and current density J of the emitting electron into the 

Fourier integral in frequency have the form

E(r, t) = —  | E(co, r ) exp ( -  m  t)dсо 

H(r, t ) = —  J H(co, r) exp(- m t]da  

D(r, t) = ~ \  D(o. r) exp(- m  t)cfo
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J(rJ ) = —  Jj(co,r)exp(-/cof)ico. ̂ j - .....................- (4)
2 71 J

Substituting these expansions into Eqs. (3) and using the well-known relation 

D(g>, r ) =  8(03, r)E(co, r ) , we obtain the following expression

rot H(co, r ) = 4n J(co, r ) -  /со е(оэ, г)Е(оэ, r),
(5)

rot Е(оэ,г) = /оэН(оэ,г),

Substituting into Eq. (5) the Fourier expansions of fields and electron current in wave vector k

E(co,r) = — ^-^-|E(k,03)exp(/kr)<i3k 

н (“ -,') = н Ы н (к - оэ)ехр(/'кг)й?3к

J(co, r) = — — - f J(k, оз) ехр(/'кг)й?3к , (6)
(2ny J

and performing simple transformations, we obtain the well-known expression for Fourier transform of 

electric field Е ( к ,ю )  in the crystal, generated by a relativistic electron:

  t
(к 2 -  оэ2 (1 + Xo ))E(k, оэ) -  k(kE(k, оэ)) -  оэ2 ^  X - gE ( k  + g, оэ) = 4га'оз J(k, оз), (7)

g

where J(k ,03) = 27teVS(o3-k V )  is the Fourier transform of the current density J(r,0  = <?VS(r-W) of a

relativistic electron crossing the target. It should be noted that for 7 = 0 expression (7) describes the

electric field in the amorphous medium.

In this work the two-wave approach of dynamic diffraction theory are used, in which both the 

incident and diffracted waves are considered as equitable in process of self repumping one into another in 

crystalline target.

The strengths of electromagnetic fields, excited by electron in the crystal are

Е(к.оз) = ^ ( к - о з С  + ^ 2)(к.оз)е^2).

E(k + g, оэ) = E (gl) (к, оэ)е|1) + E (g2) (к, оэ)е|2),

e™ l k ,  e ‘2) l k ,  e|!) _Lk g и e|2) _L k „  , k g =  к  +  g . Vectors e„21, e1,2' are situated on the plane of

vectors к и к (к  -polarization) and ej,11, ej11 are perpendicular to this plane ( a -polarization); g  is

vector of the reciprocal lattice, defining a set of reflecting atomic planes.

In the two-wave approximation of the dynamic theory, Eq. (7) combined with expressions (8) can 

be reduced to the well-known system of equations [20]

|(оэ2(1 + 5С0)-Л-2)£ «  + 03 2x_gC (-> ii«  = 87i W < s)V 8(03-k V ),

[оз:2XgC(- )£« + (032 (1 + Xo) -  k\ ) E ?  =0. 9

Xg =x'0(F (g)/ZXS(s)/N0) e ^ ( - g 2u ; /2) ,  (lOa)

x"g = x " exp| ~ \ s 2K  |, ( 10b)



where у_0 = у.', + /у." -  is the average dielectric susceptibility, F(g) -  is the form factor of atom containing 

Z electrons, S (g )  is the structural factor of a unit cell containing .Y„ atoms, Ux is the r.m.s. amplitude of 

thermal vibrations of crystal atoms. The work addresses the X-ray frequency range, where x'g < о , < 0.

We will consider a crystal with the following symmetry (Xg = /  „ ) •

The quantity ^ * and 1)( ) in system (9) are defined in the following way:

C 1" ’ = e « e «  = ( - l) rC w , C(1) =1, C (2) = |cos 26̂ 1 , P m = sin<p, P (2) = cos <p,

e™ v = (e -  X|/)p(1) = e ± -  V x , eo2)v  = (e + ж)^(2) = e„ + V//, (n)

where ^  is the azimuthal radiation angle measured from the plane formed by the vectors ^  и *  , the

value of the reciprocal lattice vector is determined by the °  ~~ Sin ^ , where C° B is the Bragg

frequency. The system of equations (9) for s -   ̂ and T ~  ^ describes the G  - polarized fields. For s — ^ ,

К
the system of equations (9) describes я  - polarized fields; note that if 20B < — , then T = 2 , otherwise 

т =  1 .

Let us solve the dispersion equation for x-waves in crystal following from the system (9):

(ю 2 (1 +  Xo) -  )(od 2 (1 +  Xo) -  ̂ ) -  ю 4X - gXgC<"’2 = ° ,  ( 12)

using standard methods of dynamic theory [20].

Let us search for the wave vectors projection k  and lv„ to the axle X, coinciding with the vector 

n (see fig. 1.) as:

kv =cocos\|/0 + Ю , k =cocos(b + Ю)Со—  + — —̂  (13)
2cos(j)0 cos<p0 ^ ё 2cosc|)g cos(|)g

For this purpose we will use the well-known relation, connecting dynamic addition agents /-q and

^  for x-waves [20].

A. + (14)
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where P = a  -  %
(  Y  ^  

1 ——
I YoJ

0

a = -V(A’ 2 ~ k 2) , Yo = cos ф0, у = cos (|) , ф0 is the angle between accident
or g g

wave vector k and vector normal to the plate surface N, ф is the angle between wave vector k g and the

vector N (see fig.i). The modules of vectors k and k g are:

к = Ыу11 + Xo + X0, kt = a j l  + y>0 + l s . (15)

Let us place (13) to (12), taking into account (14), к « <wsiiK|>0 and A„ *  &>sii4g . As a result, we

will obtain the expression for dynamic addition agents:
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л.а2) = —
g 4

P ± J P 2 + 4 X g X _ gC w  ^ it1-2) —  ~, А,0 оэ
4у

(

- p  + J p 2 + 4 у у С м^
Yo

-л

(16)

As |Я0| « ю ,  |Ag со, we can show that 0 ~ 0 (see fig.i), and therefore later on (I will be used 

for all occasions.

The solution of the system (9) for the field located in vacuum forward of the crystal will be:

8n2ieVQP(s) 1 \  8n2ieVQP(s) 1T?(s) v a c  _  1 

—  '
X o  0̂

0 3
Yo.

k l
Yo

А к - h ) ’ C17)

2 +(Q± “ V x ) 2 +(Q// +N///)2 “ Xo ^
4 o * - ^ o ) = ^ 4 ; - 0 ,

Yo
where ^*= £1Ё + 1^^*о; x,* =co 

2 Yo

y = l/ VT -  V 2 is Lorenz factor of the particle.

It was suitable for us to express the solution of the system (9) for diffracted field in crystal as:

8n2 ieVQPM a)2y C (s’z)? 0 ) c r
s f o - a j +  E M m 8 ( X g -  A . ™ )  +  E ( s ) m 8 ( X g -  A, ( 2 ) ) , (18)

r(s)<l> r(sp>
where, h  and h  are free fields, corresponding to two solutions (16) of dispersion equation (12). 

The diffracted field in vacuum can be written in the form

£ “ ,ас = E ^ Radb[}^% + j  , (19)

where E (̂ )Rad is the required radiation field.

The expression connecting the diffracted and incident fields in the crystal follows from the second 

equation of system (9):

(20)
, .  2 d )  , ,g ( s )  c r  _  ______________g £ - 0 ) с г  e

0 3 2 X g C ( " ) g

The boundary conditions on the inlet and outlet surfaces of the crystal plate in the given geometry 

have the form

j ^ )crexp

we will obtain the following expression for radiation field:

dX„ = 0 . (21)

E'"’) =R ad

8тгleVBP1 » 2XSC (

2co exp
Y g

L -  XnJ exp X* - x m
i — -----e- L
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1

То ' - х о - - — Ч + Р —га у У»Y,

, К  -  К '’2со expl /' — ----- —  L

4liLh* -Х ш)2 V g 8 /
' g

1 — exp г —  — L

1
, К  -  К '2соехр| i —  — L

y j l  “  Y g Y g J  Y g

1 — exp i —  — L
(22)

As the radiation field of relativistic electron which rectilinearly crosses a crystal contains the 

contributions of PXR and DTR we will represent the amplitude E ^ d as a sum of PXR and DTR 

amplitudes:

p i s )  _ p ( s )  p ( s )  

R a d  PXR DTR >

E is) =PXR
8trieV Q P{s>

U,T|

CO
2(0

f  r i  (  )
X; exp L - X aJ

( X* -  A,1' 1 ^
exp

v

 ~-L
У J)

2cd exp
X* -X (1) 1 §_

4 Щ К - X f )  2 ^ Г 0
y ; yJ

f  f  ^
1-exp

v v

2go exp

4 Y ^ r  xa,) 2 У * К

f ( X*„-XaJ ^  
1-exp

V v

F(f> -  
DTR

&n2ieVQP
(s,l )

2(B exp
\

- i  —  L
Y

exp

у

A,™
- i  —  L

Y /у

•v 2 У» r  -uRy o - X o  +p
ю Ys Ys Ys

f  ( 
exp

V V
- $ - L  

Ye
- exp

ЛЛ

(23а)

(23b)

(2 3c)

In accordance with the expression (23b) there are possible two branches (16) of dispersion 

relation (12) which give the contributions into PXR yield. These branches correspond to two radiated X- 

ray waves formed together with the equilibrium electromagnetic field of the fast particle. A  larger 

contribution to the radiation gives the branch of RXR, for which the real part of the denominator in the
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formula (23b) can vanish ( Re(A.„ -  ) = 0 ): For further analyses it is convenient to represent X„ and

A<U )  in such a form:

(̂1,2) = H X i C  _ ?P( 4 1  + s )  + J ^ M 2 _ s _ /pw ((1 + s )^ w  - 2 K w s ) - p w 2 f (1 + S) - k m ' s

/

(24)

where

£,(J) = ^ J ) ( 0 5 )  =  1VJ)(05) +  ^ - ^  v ( - ) = l ^ £ ---- [  M =  X ^   s  = l] jJ  Kw = *s£
2 v  , I Xo I I * 'gC W  I , Yo Xo

(s) a  2 s i n 2 9 „  ( co„( l  + 9 c o s c p c o t 9 „ )

71 “  = 2 1 x ; c w  I = V - 1  x 'gc w  11 ®

CT<J)  =  I— '  Г м  I “ V x ) "  + ( Q / /  +  4 / / / ) ~  + Y  ■ —  X o  )  ‘
I X g L  I

Since the inequality 2 sin l % / v 2 \ y : f is) 1»  1 is fulfilled in the range of X-ray frequencies, 

ту"1 (со) is a fast function of frequency CO , and it is convenient for the further analysis of the properties of

the PXR and DTR spectrum to consider V  *(®) as a spectral variable. Let us note that the resultant

formulas contain (©) and not VH®)- The second term of the last equation appears due to the 

refraction effect.

When deducing the formula (24) we took into account that in the considered geometry of 

radiation the angle between the momentum of diffracted photon and normal vector to the crystal surface

is blunt which means that Yg = COS Фг <: 0 .

The parameter £ from Eq. (25) can be presented in the form e =  sin(9B — 5) / sin(9B +  5) , where § is 

the angle between the inlet surface of the target and the ciystallographic plane. For a fixed value of 0 ,,, quantity £ 

defines the orientation of the inlet surface of the crystal plate relative to the system of diffracting atomic planes (Fig. 

2). As the angle of incidence (9B + 5 )  of an electron on the target decreases, parameter 5 becomes negative and 

then increases in magnitude (in the limiting case § —> - 0 /;), which leads to an increase in ^  . On the contrary, 

upon an increase in the angle of incidence, £ decreases (in the limiting case 8 ^ - 0  ).
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*
ь л

Fig. 2 Asymmetric ( 8 > 1, 8 < 1) reflections o f radiation from  a crystal plate.

The case 8 =  1 (5  = 0 ) corresponds to symmetric reflection.

3. Spectral-angular density of PXR and DTR

By substitution of (23) to the expression for x-radiation spectra-angular density [21]:

d-W
= о г(2тгГ 6Х |£

m -
Rad\ ’dadQ.

we will obtain the formula for spectral-angular density of PXR, DTR and the item which is the result of 

these mechanisms interference

■>2

(26)

2  A T (s)
d 'N ' Q (sV

CO - -Д
(S)

dadQ. к 2 (y-2 + (0± - y j 2 + ( 0 ,  + V//)2 -  Xo)2 PXR ’

R {s) = 
PXR

l-e x p (-/ 6 (J)A(.f) l-ex p (-/& w Aw )

AfJ) A'f A,J) A!'

d 2N ^  e2 ^ „ 2

dadQ. 712

( 1 1

y -  + (0 ± - y r j -  + (0„ + v „ ) -  y -  + (0± - y r j -  + (0„ + v „ ) -  -X
R <s)

(27a)

(27b)

(28a)
0 J

exp e x P ^ ( )  e  j

2

(28b)

/ p w  1  +  s jexp + K M iPM 1 + 8 j e x p ^ w K M  j

d 2Nj$r _ e2 Q

dadO. ж2 y-2 + (0 ± -v |/± ) 2 + (0 „  +V)/,,)2 Xo

Y  '  + ( 6 ±  “ V i ) '  + ( Q / /  + 4 / / / ) ‘  “ X o  Y  '  + ( 0 ±  “ V i ) '  + ( 0 / /  + 4 / / / ) ‘

R O)

R^t = 2s Re
Y  П[г) 1-ex p '-ib U)A ’ \ 1 -  exp

1 Aw a';’ Aw A'!»

(29a)

exp - ib O) A' (i) A
exp ibU) A

м A

1 + 6
exp - ib O) A

- I  | ( f )  +  A ( f )  - / p ( , )
1 + 6

exp ibU) A

(29b)



where the sign “ * ” indicates complex conjugation. The table of symbols in the formulas is:

Q (1) = 0 ± - l|/i> Q (*> = 0// + V//, = l _ ( Y-2 +(0  ̂ _ ^ )2 +(9 / + V/ )2

l̂ g|

A(s) - K (s) -/ p w ^ - j e x p ( - ^ w A(f ) - ^ w + K (S)- i p (s) i^ j e x p ( - / ^ w Aw )

Q {± = £ ((0<") - ф (̂ )) , ехр(- ^ )А(̂ ))+ А (+)) ,

A -  -  ^  + = ____ I____
8 2s 2sm(0s +8) L{pxt

(30)
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K U) = few- _ E_,pW((1 + 8)^W _ 2k W8) - P w ; £ ± 8 )1  _ K(^

/

Parameter b (s) characterizing the thickness of the crystal plate is the ratio of half of the path of 

the electron in the target Le = /./sm(0„ +8) to the extinction length \/,.\v ’ \ c :' ■ Parameter p (, )

characterizing the degree of absorption of X-waves in the crystal, is the ratio of the extinction length L[
(S)
ext

to the length of the absorption Labs = 1/cox" ° f  the X- rays: p' v' = / A„,„ . The functions and /<*":„

describe the spectra of PXR and DTR.

The expressions (27-29) describe the spectral-angular density of PXR and DTR of the relativistic 

electron crossing a crystal plate at an angle vy relative to the axis of the electron beam c, and their 

interference. The expressions are obtained in the framework of the two-wave approximation of dynamical 

diffraction theory taking into account the angle between the reflecting system of parallel atomic planes of 

the crystal and the target surface (angle 5  ). The expressions (27-29) can be used for investigation of 

spectral and angular properties of PXR and DTR generated in a crystal by beams of relativistic electron. In 

the present time the indication of angular divergence of the super high energy electron beams, for 

example, at the planning international linear collider ILC is actual problem. Because of the fact that the 

direction of radiation can be considerable diverged from the direction of the electron beam these 

mechanisms of the radiation could be contenders for use in this task. The beam indication at accelerator 

must be carried out in real time with minimal effect on the beam characteristics. In connection with it we 

will consider further the spectral-angular densities of PXR and DTR for the case of a thin monocrystalline 

target, when the multiple scattering of the electrons on atoms can be neglected.

4. Spectral-angular density of PXR and DTR in a thin crystal

Let us take up (consider) a thin crystal. Assuming in expressions (27-28) p <*> =   'Lu = 0, we
x'JC

will obtain the following expression for spectral-angular density of PXR and DTR

CD E ^  =  — -------       (3 1 a )
dcD dn 7Г2 (7 -2+( e L + ¥ u f  ~ Z o )
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Е>0) _
PXR

М  , . F « )

( ( 
ь м

2
V  V

ем +
£

(31b)

Я2 w(f)С' N DTR _ £ q(j)e _  „ , г12 

dcodQ. n 2

1

У  '  + ( 6 ±  -  V i ) '  +(Q// +Ч///Г У  '  + (0± “ V i ) '  + (0// + 4 / / / ) ‘  “ X o

R м

R (s) = .  DTR

-s lco tlr

Л •

(32a)

(32b)

Let us define the angular densities of PXR and DTR by integration of expressions (31) and (32) by

the frequency function c ' !(o>) with use of the relation —  = -
w

Ю 2sin~ 0,
-d t;"  which is followed from

expression for i; (со) in (25). Then the angular density of PXR will take such a view

dN,O) Q w-
(33)

approximation

dn  2n2 sin2 0B|Xg|C<J) a (s)2

Since the spectral peak of PXR is very narrow then under condition b (s> » 1  the well-known

sin2 (ox)
naS(x) can be used for integration. In this case the expression (33) will take a

view

О s 2(CT,f)‘ s - l )
L ( i )

dO. 871 sin2 0̂  |xg -  „ .» 2 г а , . ^

2<зи)
\ У

+ 8sm
^CT(f)28 - i  ^a _ e _ i

2a (f)s

(34)

The angular density of DTR will take the view

dNMiA1 v  D TR
2  t 2

e  X o Q M-
Г  , I bM  -SVS7T • tanhJ (3 5 )

:е ,|х;|С М а « 2(Х; | С « а « + х 'о Г ^ ^  ‘“ “ I ^

These expressions are derived with a glance of possibility of deviation V (V i ? V//) of the direction

of the electron velocity V  in relation to electron beam axis C j . The obtained expressions take into account 

the reflection asymmetiy of the electron field relative to the target surface (parameter £) are characterized 

by the angle 8 between target surface and a system of diffracting atomic planes in the crystal.

5. Influence of electron beam divergence on the angular densities of PXR and DTR

Let us consider the effect of the electron beam divergence on the spectral and angular 

characteristics of the radiation. For that, let us average radiation of an electron over all of its possible



straight trajectories in the beam. As an example, we will carry out the averaging of the spectral-angular 

density of PXR and DTR for the electron beam with the Gauss angular distribution:
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Let us carry out the numerical calculations of the angular densities of PXR and DTR using the 

derived expressions (34) and (35) and expression (37). For example let us consider the normalized to one 

electron angular density of the radiation of the beam of relativistic electron crossing a single crystal plate 

of tungsten W( 110) of thicknessL  = 2/urn . The angle between electron beam axis e , and the system of 

parallel diffracting atomic planes (110) of the crystal is chosen as o ;; « 20,5°, the Bragg frequency 

ooB ~ S k e V -The angle between the crystal surface and system of diffracting atomic planes 8 ^ - 10°, i.e. 

the case of symmetric reflection of asymmetric parameter s  = sm (0B — S )  / sin(0B + S )  & 2,7 is 

considered.

In Fig.3 the curves describing the angular density of PXR of relativistic electron under different

values of initial divergence Vo of electron beam are cited. The curves are built for the case when the

relativistic electrons have energy of 150 GeV. Under this condition the dependence of angular density of 

PXR on electron energy is saturated and angular density do not change with increase of electron energy.

The curves demonstrate a weak dependence of PXR angular density on initial divergence, that is 

connected with the broad angular distribution of PXR. That is why the use of PXR for the estimation of 

divergence of the electron beams of high energy will not be possible.

One can see, that angular density of PXR weakly depends on divergence of the beam at such value 

of energy of relativistic electrons. It is connected with the fact that the angular distribution of PXR in this 

case is broader than that of electron beam.

(36)

where ^0 is the divergence of the beam of radiating electrons (see Figure 1). In this case the formulas for 

averaged angular density (11) and (12) will take the view:

(37)
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Fig. 3 T he influence o f  e lectron  b eam  divergence on  the angular density  o f  PXR.

E n ergy o f  e lectron  is /i >  1 50М э В  , is electron  beam .

In Fig .4 the curves describing the angular density od DTR of relativistic electron with energy of

E  = 500М эВ  are presented for different values of divergence V 0 • One can see that the angular density of

DTR strongly depends on initial divergence of the electron beam. This fact can be explained by narrow 

angular distribution of DTR, which leads to considerable dependence on the divergence of the electron 

beam.

0 j_ , rnrad

photon 

electron sr.

Fig. 4 T he influence o f  e lectron  b eam  divergence on  an gular den sity  o f  DTR. 

E n ergy o f  e lectron  b eam  is Л =  500М э В  .



On can see that electron beam divergence more appreciably influence on angular density of DTR.

It can be explained by the fact that DTR is narrower than PXR under high energy of radiating electron and 

becomes even narrower when energy of the electron increases. That is why DTR is more sensitive to a 

change of divergence of electron beam than PXR, which angular distribution almost do not depend on the 

electron energy. One can see in the fig. 4 that the angular distribution of DTR becomes narrower and the 

dependence of DTR characteristics on electron beam divergence becomes stronger when the energy of 

radiating electron increases. It are demonstrated also in Fig. 5 and Fig.6 for energy of electrons 

E  =  10 Е э В  and E  =  200/ ЪВ correspondingly.
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9 ± , mrad

Fig. 5 The same, that in Fig. 4 under value of relativistic electron energy E  = 10 Г э В  .

0 ± , mrad

Fig. 6 The same, that in Fig. 4 under value of relativistic electron energy E  =  200Г э В  ■

For electrons of super high energies the angular density of DTR becomes very sensitive to angular 

divergence of electron beam. That can be used for analyze of the electron beams of super high energies.

It need be noted that under super high energies of radiating electrons the measurement of DTR 

characteristics is difficult task because of its sharp directionality. But in this case one can enough easy 

calculate the dependence on divergence of electron beam of number of the photons radiated in collimator



of large lateral dimensions. So, the angular density or intensity of DTR can be effectively used for 

estimation of divergence of high energy electron beam, for example on the international linear electron 

collider ILC being under construction now.

As appropriate, the obtained expressions (31) and (32) for spectral-angular densities of PXR and 

DTR can be averaged by analogy to averaging of the angular densities (34) and (35).

In the present work the averaging of the radiation from electrons in the beam was carried out, as 

an example, with the assumption of Gauss angular distribution of electrons in the beam. But the 

methodology proposed in the present work allows the use for calculation of spectral-angular 

characteristics of radiations by the beams with arbitrary distribution of electrons. So, the expressions (31), 

(32), (34) and (35) allow calculate for each electron in the beam the spectral-angular characteristics of 

PXR and DTR with taking into account the angle between its trajectory and axis of the electron beam, 

with the assumption that electron rectilinearly crosses the monocrystalline plate and then find the 

integral spectral-angular characteristics of radiation by the beam as a whole

Conclusion

The dynamic theory of coherent X-Ray radiation produced by divergent relativistic electron beam 

crossing a monocrystalline plate in Bragg scattering geometry has been developed. The expressions 

describing spectral-angular characteristic of PXR and DTR have been derived based on the two-wave 

approximation of diffraction theory taking into account the deviation of electron velocity vector from the 

electron beam axis direction. The expressions for the general case of asymmetric reflection of the electron 

coulomb field relative to target surface have been obtained. The DTR and PXR are considered in the case 

of a thin target when the multiple scattering of the electrons on the target atoms is negligible which is 

important for measuring electron beam divergence in a real time regime without change under influence 

of measurement process. The calculations of the radiation spectral-angular distribution have been made 

using the averaging by the Gauss two-dimensional angular distribution of the electrons in the beam. It 

was shown that the angular density of DTR depends on electron beam divergence more strongly than the 

angular density of PXR. The amplification of DTR angular density dependence on electron beam

divergence with increase of the radiating electron energy has been identified. It is shown that under

ultrahigh energies the DTR angular density becomes sensitive to very small angular divergence of the 

electron beam, which can be used for analysis of the dimension and divergence of such an electron beam 

as in the planning international linear electron collider ILC.
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