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Abstract
The article’s objective is to present norms based on weighted Dirichlet integrals in the
space of generalized Bessel potentials. The weighted Dirichlet integral is first defined
and then that this integralmay bewritten using themultidimensional generalized trans-
lation of the module’s degree demonstrated. We then show that a defined previously
norm cannot be specified in function space of arbitrary fractional order of smooth-
ness. We present a new norm associated with the generalized Bessel potential kernel.
We demonstrate the existence of a complete function space with a perfect functional
completion for the class of all indefinitely differentiable finite even functions with the
norm based on the generalized Bessel potential.
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1 Introduction

Function spaces of fractional smoothness and its applications to the theory of partial
differential equations are both heavily connected on classical Bessel potentials [1–3].

Our goal in this article is to develop the theory of the generalized Bessel potential
space denotedBα

γ , constructed using themultidimensional Hankel transformFγ . Such
space was first constructed in [4] using the Stein–Lizorkin approach. B-hypersingular
integrals and weighted Riesz potentials, which Lyakhov had previously established,
were used in [4] to create the norm in Bα

γ .
In this article, we use the so-called Aronszajn–Smith approach [5–7] to introduce

the norm in the class of all infinitely differentiable finitely supported, even by each

variable functions,
◦
C∞
ev . This norm is based onweightedDirichlet integral dα,γ of order

α ≥ 0. However, for α ≥ n+|γ |
4 , the class

◦
C∞
ev with norm

√
dα,γ has no functional

completion. Next, we introduce the class of generalized Bessel potentials and two
norms |u|α,γ and ‖u‖α,γ , which are equivalent to

√
dα,γ . The norm ‖u‖α,γ is based

on generalized Bessel potential. We show that
◦
C∞
ev normed by ‖u‖α,γ is a complete

function space and has a perfect functional completion.
Generalized Bessel potential space of arbitrary order α is necessary to construct a

solution to the next boundary value problem

Au = f in D, Biu = 0 on ∂D.

Here, A is an elliptic operator containing Bessel differential operators

Bγi = ∂2

∂x2i
+ γi

xi

∂

∂xi
, γi > 0,

in particular, the Laplace–Bessel operator �γ = ∑n
i=1 Bγi .

A different approach for the functional spaces connected to the Laplace–Bessel
operator was devised in publications [8, 9, 11]. In [10, 12], it was shown that the
Bessel potentials producedby theBessel differential operators are bounded inweighted
Lebesgue space. The Bessel potentials were described in terms of the B-Lizorkin–
Triebel spaces in [13]. For perturbed differential operators Bγi transmutation operators
have been studied in a number of publications, including the recent papers [14–17].

2 Definitions

Suppose that Rn represents the n-dimensional Euclidean space. We deal with the
ortant

R
n+ = {x = (x1, . . . , xn) ∈ R

n, x1>0, . . . , xn>0}
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and

R
n+ = {x = (x1, . . . , xn) ∈ R

n, x1≥0, . . . , xn≥0}.

Let γ = (γ1, . . . , γn) be a multi-index, where γi are positive fixed real numbers for
i = 1, . . . , n, and |γ | = γ1 + · · · + γn .

We shall indicate a part of the sphere in R
n+ with radius r and origin centered as

Sr + (n):

S+
r (n) = {x ∈ R

n+ : |x | = r} ∪ {x ∈ R
n+ : xi = 0, |x |≤r , i = 1, . . . , n}.

The next formula from [18], p. 49, for the weighed integral over the S +1 (n) :

|S+
1 (n)|γ =

∫

S+
1 (n)

xγ dS =
∏n

i=1 �
(

γi+1
2

)

2n−1�
(
n+|γ |

2

) , (1)

will be used later.
Let � be symmetric with respect to each hyperplane xi=0, i = 1, . . . , n, finite

or infinite open set in R
n . We consider �+ = � ∩ R

n+ and �+ = � ∩ R
n+, where

R
n+={x=(x1, . . . , xn)∈Rn, x1≥0, . . . , xn≥0}.The classCm(�+) consists ofm times

differentiable on �+ function. The subset of functions from Cm(�+) such that all
derivatives of these functions with respect to xi for any i = 1, . . . , n are continuous
up to xi=0 is denoted by Cm(�+). Class Cm

ev(�+) consists of all functions from

Cm(�+) such that ∂2k+1 f
∂x2k+1

i
|xi=0= 0 for all non-negative integer k ≤ m−1

2 and for all

i = 1, . . . , n (see [19] and [20], p. 21).
We shall refer to Cm

ev(R
n+) in the following as Cm

ev . We define

C∞
ev (�+) =

⋂
Cm
ev(�+)

with intersection taken for all finite m and C∞
ev (R+) = C∞

ev .
The space of all functions f ∈C∞

ev (�+) with a compact support is denoted by
◦
C∞
ev(�+). We will employ notations:

◦
C∞
ev(�+)=D+(�+) and

◦
C∞
ev(R+) = ◦

C∞
ev .

Let the space of all measurable inRn+ functions f , evenwith respect to each variable
xi , i = 1, . . . , n, such that

∫

R
n+

| f (x)|pxγ dx < ∞

be denoted by Lγ
p(R

n+) = Lγ
p , 1≤p<∞. Here and in the sequel,

xγ =
n∏

i=1

xγi
i .
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The Lγ
p-norm of f for a real number p > 1 is defined by

‖ f ‖Lγ
p(R

n+) = ‖ f ‖p,γ =
( ∫

R
n+

| f (x)|pxγ dx

)1/p

.

Lγ
p is a Banach space (see [20]).
A multidimensional Hankel transform of a function f ∈Lγ

1 (Rn+) is written as (see
[18], p. 37):

Fγ [ f ](ξ) = Fγ [ f (x)](ξ) = f̂ (ξ) =
∫

R
n+

f (x) jγ (x; ξ)xγ dx .

The kernel of Fγ is

jγ (x; ξ) =
n∏

i=1

j γi−1
2

(xiξi ), γ1 > 0, . . . , γn > 0,

where the symbol jν is used for the normalized Bessel function of the first kind

jν(x)=2ν�(ν + 1)

xν
Jν(x), Jν is Bessel function of the first kind [21].

Let f ∈ Lγ
1 (R+) be of bounded variation by each variable xi , i = 1, . . . , n in a

neighborhood of a point x of continuity of f . Then the inversion formula (see [18], p.
38)

F−1
γ [ f̂ (ξ)](x) = f (x) = 2n−|γ |

n∏

j=1
�2

( γ j+1
2

)

∫

R
n+
jγ (x, ξ) f̂ (ξ)ξγ dξ

holds.
The multidimensional Hankel transform can be written using the one-dimentional

Hankel transforms:

Fγ [ f ](ξ) = Fγ1 ◦ · · · ◦ Fγn [ f ](ξ1, . . . , ξn),

where x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn) and

Fγi [ f ](ξ) =
∞∫

0

f (x) j γi−1
2

(xiξi )x
γi
i dxi , i = 1, . . . , n.

Similar to the Fourier transform, the Hankel transform reduces the Bessel differen-
tiation operation to multiplication by the corresponding arguments (see [20]):

Fγi [(Bγi )xi f ](ξ) = −|ξi |2Fγi [ f ](ξ), (2)
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where (Bγi )xi = ∂2

∂x2i
+ γi

xi

∂

∂xi
is a Bessel operator and i = 1, . . . , n.

In [20], p. 20, the next theorem is presented.

Theorem 1 If x
ν
2 ϕ ∈ L2[0,∞), then Hankel transform x

ν
2 Fνϕ ∈ L2[0,∞) and

Parseval’s formula

∞∫

0

|Fν[ϕ](ξ)|2ξνdξ = 2ν−1�2
(

ν + 1

2

) ∞∫

0

|ϕ(x)|2xνdx

is true.

Using Theorem 1, we get Parseval’s formula for themultidimensional Hankel trans-
form. If f ∈ Lγ

2 (Rn+), then Fγ f ∈ Lγ
2 (Rn+) and

∫

R
n+

|Fγ [ f ](ξ)|2ξγ dξ = 2|γ |−n
n∏

j=1

�2
(

γ j + 1

2

) ∫

R
n+

| f (x)|2xγ dx . (3)

The equality

(γTy
x f )(x) = γTy

x f (x) = ( γ1T y1
x1 . . . γn T yn

xn f )(x) (4)

defines the multidimensional generalized translation, where each of one-dimensional
generalized translations γi T yi

xi acts for i=1, . . ., n by the formula

( γi T yi
xi f )(x) =

�
(

γi+1
2

)

√
π�

( γi
2

)

×
π∫

0

f (x1, . . . , xi−1,

√
x2i + y2i − 2xi yi cosϕi , xi+1, . . . , xn) sinγi−1 ϕi dϕi .

Next, we will employ the notation:

C(γ ) = π− n
2

n∏

i=1

�
(

γi+1
2

)

�
( γi
2

) .

Multidimensional generalized translation γTy
x produces a generalized convolution

of the form

( f ∗ g)γ (x) = ( f ∗ g)γ =
∫

R
n+

f (y)(γTy
x g)(x)y

γ dy. (5)
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The first and second kinds of modified Bessel functions, Iα(x) and Kα(x), often
known as the hyperbolic Bessel functions, are defined as follows (see [21]):

Iα(x) = i−α Jα(i x) =
∞∑

m=0

1

m! �(m + α + 1)

( x
2

)2m+α

,

Kα(x) = π

2

I−α(x) − Iα(x)

sin(απ)
. (6)

In (2) and (6),α is not an integer. By taking the limit in the aforementioned equations,
the functions Iα and Kα are defined for integer values of the parameter α. It is clear
that the function Kα is an even function because the connection Kα(x) = K−α(x)
holds true.

Next, we give some definitions from [5]. Let F be a linear functional class. The
basic set of F is the abstract set E in which the functions of a F are defined. We start
from the exceptional set.

“Exceptional” sets are often used in solving various mathematical problems, since
the situation when a certain property is not true for all values of a certain set is
quite common. The most well-known example of the exceptional set is the set of
Lebesgue measure zero. Exceptional sets have a very diverse history. Additionally,
there are substantial differences between the approaches taken to study the various
classes of exceptional sets. Here, following Aronszajn and Smith, we give a general
descriptive definition of such systems (exceptional class), independent of the method
of construction.

An exceptional class or a system of exceptional sets in the basic set E is a class A
of subsets of E which is

• hereditary: if A ∈ A and B ⊂ A, then B ∈ A,
• σ -additive: if An ∈ A, n = 1, 2, . . ., then

⋃∞
n=1 An ∈ A.

Moreover, all sets in the class A are “small” or “thin” in one sense or another.
If the set of points under which a statement is false belongs to the exceptional class

A, then we say that the sentence is true, exc.A.
If A is an exceptional class that contains the exceptional set of each f in F , then

F is a linear functional class relative toA. We will write F rel.A if F is a functional
class relative to A. If F rel.A, then A is called an exceptional class for F , and the
sets in A are called exceptional sets.

LetF be a functional class rel.A. The saturated extension ofF rel.A is the classF ′
of all functions defined exc.A and equal exc.A to some function inF . IfF coincides
with its saturated extension, then it is called saturated rel.A.

If F ⊂ F ′, A ⊂ A′, and the norm of each function in F is the same as its norm
as a function in F ′, then a normed functional class F rel.A is embedded in a normed
functional class F ′ rel.A′.

If each f in F is a limit of a sequence fn in D, then a subset D of a normed
functional class F (or of any functional class with a pseudo-norm) is said to be dense
in F .

IfF is embedded inF ′ and is a dense subset ofF ′, then a functional spaceF ′ rel.A′
is a functional completion of a normed functional class F rel.A.
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The saturated completion rel.A is known as the perfect completion of F if there is
the smallest exceptional classA relative to which a given F has a functional comple-
tion.

3 Weighted Dirichlet integral

In this section,wedealwith the functions from
◦
C∞
ev and introduce theweighedDirichlet

integral dα,γ of order α ≥ 0 with power weight ξγ = ∏n
i=1 ξ

γi
i . At first, we define

dα,γ by using multidimensional Hankel transforms, after which a direct form for dα,γ

is given in terms of Bessel operators. Next, we prove that the space
◦
C∞
ev normed by√

dα,γ is not a functional space relative to any exceptional class when α ≥ n+|γ |
4 .

Let i = (i1, . . . , im) be a multi-index consisting of integers between 1 and n,
d(i) = m, ξ i = ∏m

k=1 ξik , ξ = (ξ1, . . . , ξn) and

Bi = (Bγim
)xim · · · (Bγi1

)xi1
,

where (Bγik
)xik

= ∂2

∂x2ik
+ γik

xik

∂
∂xik

is a Bessel operator, k = 1, . . . ,m.

For an integer α ≥ 0, the formula defines a weighted Dirichlet integral of order α

as

dα,γ (u) =
∑

d(i)=α

∫

R
n+

|Biu|2xγ dx .

If α = 1, then d(i) = 1 and i consists only of one element i = (i1), which has values
from 1 to n. In this case,

d1,γ (u) =
n∑

j=1

∫

R
n+

|(Bγ j )x j u|2xγ dx .

If α = 2, then d(i) = 2 and i consists only of two elements i = (i1, i2) and each has
value from 1 to n. In this case,

d2,γ (u) =
n∑

k, j=1

∫

R
n+

|(Bγk )xk (Bγ j )x j u|2xγ dx .

In Hankel images using (2), we get

dα,γ (u) =
∫

R
n+

|ξ |4α|Fγ [u](ξ)|2ξγ dξ. (7)
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Formula (7) can be used to defined the weighted Dirichlet integral dα,γ for arbitrary
α ≥ 0.

Simple calculations give

∫

R
n+

∫

R
n+

| γTy
xu(x) − u(x)|2
|y|n+|γ |+4α xγ yγ dxdy

=
∫

R
n+

∫

R
n+

|u(y) − u(x)|2
(

γTx
y

1

|y|n+|γ |+4α

)
xγ yγ dxdy. (8)

Applying Theorem 1 to equality (8) and doing simple calculations, we arrive at the
following statement.

Proposition 2 For 0 < α < 1/2 and function u ∈ ◦
C∞
ev, we have the equality

dα,γ (u) =
∫

R
n+

|ξ |4α | Fγ [u](ξ) |2 ξγ dξ

= 1

C(n, γ, α)

∫

R
n+

∫

R
n+

| u(y) − u(x) |2
(

γTx
y

1

|y|n+|γ |+4α

)
xγ yγ dxdy, (9)

where

C(n, γ, α) = 21−|γ |−4απ

sin(2απ)�(2α + 1)�
(
n+|γ |

2 + 2α
) n∏

i=1
�

(
γi+1
2

) .

The constant C(n, γ, α) has the following properties:

lim
α→0+

1

C(n, γ, α)
= 0, lim

α→1/2−0

1

C(n, γ, α)
= 0.

Thus, if the greatest integer that is strictly less than α is denoted by l, then

dα,γ (u) =

⎧
⎪⎨

⎪⎩

∑

|i |=α

∫

R
n+
|Bi u|2xγ dx, if α is integer;

∑

|i |=l

∫

R
n+

∫

R
n+
|Bi u(y) − Bi u(x)|2Tα(x, y, γ )xγ yγ dxdy, otherwise,

where

Tα(x, y, γ ) = 1

C(n, γ, α − l)

(
γTx

y
1

|y|n+|γ |+4α

)
.
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The weighted Dirichlet integral dα,γ is continuous in α and independent of the
orthogonal coordinates which are used in R

n+.
From a practical and theoretical point of view, it is important to establish in what

the space and with what norm the set
◦
C∞
ev is dense.

In [22], the space of functions related to multiplication by |x |−α in the images of
Hankel transform was introduced and considered. This space is called the Riesz B-
potential space. Recall that in the B-potential theory [23], Riesz B-potential has the
form:

(Uα
γ f )(x) = u(x) = Cn,γ

∫

R
n+

f (y)( γTy
x |x |α−n−|γ |)yγ dy, α > 0

with normalized constant Cn,γ . For Uα
γ , the analog of Sobolev theorem is valid (see

Theorem 1 in [23]). Namely, for 0<α<
n+|γ |

p , p>1, operator Uα
γ acting on a function

f ∈ Lγ
p is bounded from Lγ

p to Lγ
q , where

1

q
= 1

p
− α

n+|γ | . For α ≥ n+|γ |
p potentials,

Uα
γ can be determined in the sense of weighted generalized functions. As a conse-

quence of this fact in [22] (see Theorem 5), it was proved that
◦
C∞
ev is dense in the space

of Riesz B-potentials only for 0<α<
n+|γ |

p . So the norm based on Riesz B-potential is
not convenient for using in the differential problems, because for these problems we
need potentials of arbitrarily high order.

Next, we prove that in a reasonable sense the space
◦
C∞
ev normed by

√
dα,γ is not a

functional spacewhenα ≥ n+|γ |
4 , since convergence in normdoes not imply pointwise

convergence of a subsequence.

Theorem 3 The space
◦
C∞
ev normed by

√
dα,γ is not a functional space relative to any

exceptional class if α ≥ n+|γ |
4 .

Proof Let u ∈ ◦
C∞
ev and u be identically 1 in a neighborhood of the origin belonging

to Rn+. Let uρ = u(x/ρ). Changing variables by the formula ξ/ρ = y gives

dα,γ (uρ) = ρn+|γ |−4α
∫

R
n+

|y|4α|Fγ [u](y)|2yγ dy = ρn+|γ |−4αdα,γ (u).

So for α >
n+|γ |

4 , we obtain

lim
ρ→∞ dα,γ (uρ) = 0, but lim

ρ→∞ uρ(x) = 1.

Because the whole Rn+ would not have to be an exceptional set, this demonstrates that
the space in question cannot be a functional space.
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Now,we consider the case α = n+|γ |
4 . Choosing ε such that 0 < ε < α and v ∈ ◦

C∞
ev

for the bilinear form corresponding to the quadratic form dα,γ (u), we obtain

dα,γ (uρ, v) =
∫

R
n+

|ξ |4αFγ [uρ](ξ)Fγ [v](ξ)ξγ dξ

=
∫

R
n+

|ξ |2α+2εFγ [uρ](ξ)|ξ |2α−2εFγ [v](ξ)ξγ dξ

≤
( ∫

R
n+

|ξ |4α+4ε | Fγ [uρ](ξ) |2 ξγ dξ

)1/2

·
( ∫

R
n+

|ξ |4α−4ε | Fγ [v](ξ) |2 ξγ dξ

)1/2

=
√
dα+ε,γ (uρ)

√
dα−ε,γ (v).

Since limρ→∞ dα+ε,γ (uρ)=0, then limρ→∞ dα,γ (uρ, v)=0 holds for each v ∈ ◦
C∞
ev .

LetH be the Hilbert space with the distance function produced by the inner product

dα,γ (u, v). Then H is the abstract completion of
◦
C∞
ev with the norm given by

√
dα,γ .

So if uρ → 0, then we obtain that ρ → ∞ is weakly in this Hilbert space because
dα,γ (uρ) is bounded. It means that [24] there is a sequence ρk → ∞ such that the
arithmetic means of {uρk } converges strongly to 0. But lim

ρ→∞ uρ(x) = 1, and as a result

the sequence of arithmetic means pointwise converges to 1 everywhere. So the space
cannot be a functional space. ��

One of the simplest norms on
◦
C∞
ev such that it is equivalent to

√
dα,γ is

|u|α,γ =
⎛

⎜
⎝

∫

R
n+

(1 + |ξ |4α)|Fγ [u](ξ)|2ξγ dξ

⎞

⎟
⎠

1/2

. (10)

Next, we show that norm (10) is closely related with generalized Bessel poten-
tials and can be represented using convolutional kernel generating generalized Bessel
potential.

Proposition 4 The norms
√
dα,γ and |u|α,γ are equivalent on

◦
C∞
ev .

Proof For |u|α,γ , taking into account (3) and (7), we can write
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|u|2α,γ =
∫

R
n+

(1 + |ξ |4α)|Fγ [u](ξ)|2ξγ dξ

=
∫

R
n+

|Fγ [u](ξ)|2ξγ dξ +
∫

R
n+

|ξ |4α|Fγ [u](ξ)|2ξγ dξ

= d0,γ + dα,γ = c‖u‖2
Lγ
2

+ dα,γ .

Hence, it follows that

√
dα,γ ≤ |u|α,γ .

Besides,

|u|α,γ ≤ √
d0,γ + √

dα,γ ≤ C1
√
dα,γ .

So the norms |u|α,γ and
√
dα,γ are equivalent on

◦
C∞
ev . ��

4 Class of generalized Bessel potentials

In this section, we give a definition and some basic properties of the generalized Bessel
potential. Such potentials are generated by multiplication by (1 + |x |2)α/2 in images
of the Hankel transforms. We would like to emphasize that we will indicate only those
properties that are important for the theory of function spaces, namely the nature of
the singularity at the origin, the fact that the decay at infinity is sufficiently rapid to
make it integrable and semi-group property.

We consider the generalized Bessel potential is given by the relation (see [25]),

u = (Gα
γ ϕ)(x) =

∫

R
n+

Gγ
α (y)( γTy

xϕ(x))yγ dy, (11)

where

Gγ
α (x) = F−1

γ [(1 + |ξ |2)−α/2](x) (12)

is the generalized Bessel kernel. In [26], two forms of an inverse operator to the (11)
were constructed.

In [4], the space

Bα
γ (Lγ

p) = {u : u = Gα
γ ϕ, ϕ ∈ Lγ

p}

with the norm

‖u‖Bα
γ (Lγ

p)
= ‖ϕ‖Lγ

p
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was introduced and also a Liouville class of fractional B-smoothness was constructed
on the basis of B-hypersingular integrals.

In [25], it was shown that

Gγ
α (x) = 2

n−|γ |−α
2 +1

|x | n+|γ |−α
2 �

(
α
2

) ∏n
i=1 �

(
γi+1
2

) K n+|γ |−α
2

(|x |), (13)

where K n+|γ |−α
2

is the second kind of Bessel function (modified) (see (6)).

The kernel Gγ
α (x) has the following properties:

1. Gγ
α (x) is infinitely differentiable beyond the origin,

2. for |x | → 0, function Gγ
α (x) admits the estimate

Gγ
α (x) ∼ Mα(n, γ )

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�
(
n+|γ |−α

2

)

2α−|γ | |x |α−n−|γ |, if 0 < α < n + |γ |;
−21−n

(
ln

( |x |
2

)
+ ϑ

)
, if α = n + |γ |;

�
(

α−n−|γ |
2

)

2n , if n + |γ | < α,

(14)

Mα(n, γ ) = 2n−|γ |

�
(

α
2

) n∏

i=1
�

(
γi+1
2

) ,

3. for |x | → ∞, function Gγ
α (x) admits the estimate

Gγ
α (x) ∼

√
π2

n−|γ |−α+1
2

|x | n+|γ |−α+1
2 �

(
α
2

) n∏

i=1
�

(
γi+1
2

) e−|x |, (15)

4. Gγ
α (x) ∈ Lγ

1 (Rn+), α > 0,

5.
∫

R
n+

Gγ
α (x)xγ dx = 1,

6. (Gγ
α ∗Gγ

β )γ = Gγ
α+β, α > 0, β > 0,where (Gγ

α ∗Gγ
β )γ is generalized convolution

(5).

Here,

ϑ = lim
n→∞

(
− ln n +

n∑

k=1

1

k

)
=

∞∫

1

(
−1

x
+ 1

�x�
)

dx

is the Euler–Mascheroni constant.
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With the exception of x = 0, the kernel Gγ
α (x) is an analytical function of |x |. For

x �= 0, Gγ
α (x) is an entire function of α.

Since |Gγ
α | is integrable with weight xγ , its Hankel transform exists for each ξ .

The kernel Gγ
α is analytic for α > 0 as a function of α. Therefore, from (12) we

obtain for α > 0 the Hankel transform of the generalized Bessel kernel by analytical
continuation of

Fγ [Gγ
α ](ξ) = (1 + |ξ |2)−α/2. (16)

Let us introduce the norm

‖u‖2α,γ =
∫

R
n+

(1 + |ξ |2)2α|Fγ [u](ξ)|2ξγ dξ. (17)

To obtain the direct expression of (17) for 0 < α < 1/2, we first introduce the
function

ωα,γ (|x |) = 2n−α+2

�
(

α
2

) n∏

i=1
�

(
γi+1
2

)

∫ ∞

0
t
n+|γ |−α

2 −1e−t− |x |2
4t dt .

We can calculate an integral and obtain

ωα,γ (|x |) = 2
n−|γ |−α

2 +1

�
(

α
2

)∏n
i=1 �

(
γi+1
2

) |x | n+|γ |−α
2 K n+|γ |−α

2
(|x |). (18)

The generalized convolution (5) with (18) can then be used to express the generalized
Bessel potential in Eq. (11):

(Gα
γ ϕ)(x) =

(
ωα,γ (|x |)
|x |n+|γ |−α

∗ ϕ

)

γ

, α > 0.

Next, we need ω−4α,γ (|x |) for 0 < α < 1/2. The kernel function ω−4α,γ (|x |)
exponentially decays at infinity and goes to a constant at the origin according to the
asymptotic features of the modified Bessel function Knu:

lim|x |→∞ ω−4α,γ (|x |) = 0, lim|x |→0
ω−4α,γ (|x |) =

2n+4α�
(
n+|γ |+4α

2

)

� (−2α)
∏n

i=1 �
(

γi+1
2

) .

(19)
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Using ω−4α,γ , we can write the direct expression of (17) for 0 < α < 1/2:

‖u‖2α,γ = 2|γ |−n+1
n∏

i=1

�2
(

γi + 1

2

)

×
⎛

⎜
⎝

∫

R
n+

∫

R
n+

| γTy
xu(x) + u(y)|2
|x |n+|γ |+4α (ω−4α,γ (|x |) − ω−4α,γ (0))xγ dx yγ dy−

−
∫

R
n+

∫

R
n+

| γTy
xu(x) − u(y)|2
|x |n+|γ |+4α (ω−4α,γ (|x |) + ω−4α,γ (0))xγ dx yγ dy

⎞

⎟
⎠ .

(20)

Proposition 5 The norms ‖u‖α,γ and |u|α,γ are equivalent on
◦
C∞
ev .

Proof It is obvious that (1+|ξ |4α) ≤ (1+|ξ |2)2α , so |u|α,γ ≤ ‖u‖α,γ . Let us consider

a function y = 1+x2α

(1+x)2α
. Clearly, this function has a positive point of minimum x = 1;

therefore,

(1 + |ξ |2)2α ≤ 22α−1(1 + |ξ |4α).

So, ‖u‖α,γ ≤ C |u|α,γ and the norms |u|α,γ and ‖u‖α,γ are equivalent on
◦
C∞
ev . ��

5 Perfect functional completion of the classF�
˛

In this section, we study the normalized function class Fγ
α which is

◦
C∞
ev normed by

‖u‖α,γ of the form (17). Also we show that for the normalized function class, Fγ
α

perfect functional completion can be obtained. The exceptional class of this perfect
completion is the class of sets where the potential Gα

γ ϕ, α > 0 of ϕ ∈ Lγ
2 may be

undefined.
Now, we construct an exceptional set based on the generalized Bessel potential. we

denote by Aγ
2α , α > 0 the class of all sets A such that for some function ϕ ∈ Lγ

2 ,
ϕ ≥ 0 the property

A ⊂
⋃

x

{x ∈ R
n+ : (G2α

γ ϕ)(x) = +∞}

is valid.
Since the kernel Gγ

α (x) ∈ Lγ
1 (Rn+), then for any ϕ ∈ Lγ

2 function (Gα
γ ϕ)(x) is

defined and finite almost everywhere and (Gα
γ ϕ)(x) ∈ Lγ

2 . In particular, each set
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from Aγ
2α has the weighted Lebesgue measure 0. In addition, the Hankel transform

of (Gα
γ ϕ)(x) is Fγ [Gα

γ ϕ](x) = (1+ |ξ |2)−α/2Fγ [ϕ](x). Due to the previous equality
and the Parseval equality (3) for the Hankel transform, we have

‖G2α
γ ϕ‖α,γ =

⎛

⎜
⎝

∫

R
n+

|Fγ [ϕ](x)|2ξγ dξ

⎞

⎟
⎠

1/2

= c‖ϕ‖Lγ
2
, ϕ ∈ Lγ

2 ,

which proves the following proposition.

Proposition 6 For ϕ ∈ Lγ
2 , the following conditions are comparable:

1. ϕ = 0 everywhere, except for sets of weighted Lebesgue measure 0,
2. G2α

γ ϕ ≡ 0,
3. G2α

γ ϕ = 0 exc.Aγ
2α ,

4. G2α
γ ϕ = 0 everywhere, except for sets of weighted Lebesgue measure 0,

5. ‖G2α
γ ϕ‖α,γ = 0.

Let Pα
γ denote the class of all functions u defined exc.Aγ

2α such that the equality

u(x) = (G2α
γ ϕ)(x) exc.Aγ

2α

is valid for some function ϕ ∈ L2
γ .

Henceforth, the normed class with the norm ‖u‖α,γ we denote by Pα
γ .

Proposition 7 Class Aγ
2α is an exceptional class. Class Pα

γ is a complete function

space with respect to Aγ
2α .

Proof To prove thatAγ
2α is an exceptional class, we should show thatAγ

2α is hereditary
and σ -additive. If A ∈ Aγ

2α and B ⊂ A, then for some function ϕ ∈ Lγ
2 , such that

ϕ ≥ 0, the following embedding

B ⊂ A ⊂
⋃

x

{x ∈ R
n+ : (G2α

γ ϕ)(x) = +∞},

is valid. Therefore, B ∈ Aγ
2α . Next, let An ∈ Aγ

2α and let ϕn ≥ 0 a function such that

An ⊂
⋃

x

{x ∈ R
n+ : (G2α

γ ϕn)(x) = +∞}, ‖ϕn‖2,γ ≤ 1

2n+|γ | .

Then if A = ⋃∞
n=1 An and ϕ = ∑∞

n=1 ϕn , it is clear that ϕ ≥ 0 is a function from Lγ
2

such that

A ⊂
⋃

x

{x ∈ R
n+ : (G2α

γ ϕ)(x) = +∞},

so that A ∈ Aγ
2α . ��
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Theorem 8 Class Pα
γ is a complete function space with respect to Aγ

2α .

Proof From Proposition 6, it follows that Pα
γ is a normalized function class rel.Aγ

2α ,
i.e., conditions u = 0 exc.Aγ

2α and ‖u‖α,γ = 0 are equivalent. From

‖G2α
γ ϕ‖α,γ = c‖ϕ‖Lγ

2
,

ϕ ∈ Lγ
2 , it follows that Pα

γ is complete; moreover, it is saturated. It remains only to
prove the function space property.

One may choose a subsequence {un} from any sequence convergent to 0 such that

∞∑

n=1

‖un‖α,γ < ∞.

If un = G2α
γ ϕn , except for a set An ∈ Aγ

2α , then let

ϕ(x) =
∞∑

n=1

|ϕn(x)|.

Then ϕ ∈ Lγ
2 andG2α

γ ϕ(x) → 0 for all x /∈ A0 = ⋃
x {x ∈ R

n+ : (G2α
γ ϕ)(x) = +∞}.

Since un → 0 for all x /∈ ⋃∞
n=1 An , An ∈ Aγ

2α . This proves that P
α
γ is a complete

function space with respect to Aγ
2α . ��

Theorem 9 A class Pα
γ is a perfect functional completion of the class Fγ

α .

Proof Let us show that Fγ
α ⊂ Pα

γ . Let u ∈ Fγ
α and Fγ ϕ = (1 + |ξ |2)αFγ u. Function

ϕ is the inverse Hankel transform: ϕ = F−1
γ (1 + |ξ |2)αFγ u. Since u ∈ ◦

C∞
ev(R

n+),
then Fγ ϕ ∈ Lγ

1 and Fγ ϕ ∈ Lγ
2 . This means that ϕ ∈ Lγ

1 , ϕ ∈ Lγ
2 is continuous and

bounded. Hence,G2α
γ ϕ is continuous and belongs to Pα

γ . Inasmuch as Fγ u=FγG2α
γ ϕ,

then u = G2α
γ ϕ with the exception of the set of the weighted Lebesgue measure zero;

nevertheless, since both functions are continuous, then u = G2α
γ ϕ everywhere, so that

u ∈ Pα
γ and Fγ

α ⊂ Pα
γ .

Denote byFγ
α the closure ofFγ

α in Pα
γ . ThenFγ

α is a functional completion ofFγ
α .

We need to show thatFγ
α = Pα

γ and this completion is perfect. Since the norm ‖u‖α,γ

is finite for every u ∈ Pα
γ , every u ∈ Pα

γ is equal to some v ∈ Fγ
α everywhere except

for a set of weighed Lebesgue measure 0. However, both u and v are in Pα
γ , so that u

equals v everywhere except for a set of weighed Lebesgue measure 0 which implies

that ‖u − v‖α,γ = 0, and hence u = v exc.Aγ
2α . Therefore, Fγ

α = Pα
γ . ��
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6 Conclusion

There are two possible definitions of the class of the generalized Bessel potentials
Bα

γ (Lγ
p) of order α in R

n+. The first one is that u ∈ Bα
γ (Lγ

p) if u is the generalized
convolution (Gγ

α ∗ ϕ)γ for some ϕ ∈ Lγ
p(R

n+). This approach was presented in [4],
where B-hypersingular integrals were used. The second is that Bα

γ (Lγ
p) is based on

the norm

‖u‖2α,γ =
∫

R
n+

(1 + |ξ |2)α|Fγ [u](ξ)|2ξγ dξ,

which can be written using convolutional kernel generating generalized Bessel poten-
tial. This expression shows that the quadratic interpolation between ‖u‖α,γ and ‖u‖β,γ

gives ‖u‖δ,γ , where δ is the interpolated order α(1− t) + βt . The norm ‖u‖α,γ is the
most convenient for the study of the class of the generalized Bessel potentials in Rn+.
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