

МАТЕМАТИКА

УДК 517.53

О ГРАНИЧНЫХ ЗНАЧЕНИЯХ ПРОИЗВЕДЕНИЯ B_{α} ON BOUNDARY VALUES OF PRODUCTS B_{α}

B.C. ЗАХАРЯН, P.B. ДАЛЛАКЯН, И.B. ОГАНИСЯН V.S. ZAKARYAN, R.V. DALLAKYAN, I.V. HOVHANNISYAN

Национальный политехнический университет Армении
National Polytechnic University of Armenia
E-mail: mathdep@seua.am; dallakyan@mail.ru; ishkhanh@gmail.com

Аннотация. Пользуясь аппаратом интегродифференцирования Римана–Лиувилля, М. М. Джрбашян обобщил класс мероморфных в единичном круге функций Р. Неванлинны, вводя также произведения B_{α} ($-1 < \alpha < +\infty$), которые в специальном случае $\alpha = 0$ совпадают с произведениями Бляшке. При $-1 < \alpha < 0$ М. М. Джрбашяну и В. С. Захаряну удалось установить взаимосвязь между произведениями B_{α} и B Бляшке.

В настоящей работе, пользуясь теоремой о взаимосвязи произведений $B_{\alpha}\left(-1<\alpha<0\right)$ и $B=B_{0}$ доказывается, что бесконечные произведения B_{α} не могут принадлежать классу D_{0}^{2} - аналитических в единичном круге функций с конечным интегралом Дирихле. Это означает, что производная произведения B_{α} не может принадлежать также классу H^{1} .

Resume. Using the Riemann-Liouville integration-differentiation operator M. M. Djrbashyan generalized the class of R. Nevanlinna's meromorphic functions in the unit circle including the product B_{α} (-1 < α < + ∞), which in the special case of α = 0 coincide with the Blaschke product. Furthermore, when -1 < α < 0, M. M. Djrbashyan and V. S. Zakaryan showed a connection between the products B_{α} and B of Blaschke.

In this work, using this connection theorem we prove that the infinite product B_{α} (-1 < α < 0) doesn't belong to D_0^2 - the class of analytic functions in the unit circle with finite Dirichlet integral. This means that the derivative of B_{α} doesn't belong to the class H^1 .

Ключевые слова: оператор интегро-дифференцирования Римана—Лиувилля, произведение Бляшке, произведение Джрбашяна, ядра Джрбашяна, классы типа Дирихле.

Keywords: Riemann–Liouville integration-differentiation operator, Blaschke product, Djrbashyan product, Djrbashyan kernels, Dirichlet-type classes.

Введение

Пусть $\mathbb{D} = \{z; |z| < 1\}$ — единичный круг комплексной плоскости \mathbb{C} , $0 . Класс <math>H^p$ определяется как множество тех аналитических в единичном круге \mathbb{D} функций f для которых выполняется условие:

$$\sup_{0 \le r < 1} \left\{ \frac{1}{2\pi} \int_{0}^{2\pi} \left| f\left(re^{i\varphi}\right) \right|^{p} d\varphi \right\} < +\infty.$$

О классах H^p можно читать в [1], [2].

Пусть $0 , <math>-1 < \alpha < +\infty$. Класс A^p_α определяется как множество тех аналитических в $I\!\!D$ функций для которых выполняется условие:

$$\|f\|_{A^p_\alpha}^p = \int_0^r \int_0^{2\pi} (1-r)^\alpha \left|f\left(re^{i\theta}\right)\right|^p r dr d\theta < +\infty.$$

Пусть $0 , <math>-1 < \alpha < +\infty$. Класс D^p_α определяется как множество тех аналитических в $I\!\!D$ функций для которых выполняется условие:

$$||f||_{D_{\alpha}^{p}}^{p} = \int_{0}^{r} \int_{0}^{2\pi} (1-r)^{\alpha} |f'(re^{i\theta})|^{p} r dr d\theta < +\infty.$$

В случае когда $\alpha+1 < p$ классы D^p_α называются классами типа Дирихле. Класс D^2_0 называется классом аналитических в единичном круге функций с конечным интегралом Дирихле. Пусть последовательность комплексных чисел $\{z_n\} \subset \mathbb{D}$ такая, что

$$\sum_{n=1}^{\infty} \left(1 - \left| z_n \right| \right) < +\infty.$$

Произведением Бляшке называется следующая функция:

$$B(z;\{z_n\}) = \prod_{n=1}^{\infty} \frac{z_n - z}{1 - \overline{z}_n z} \cdot \frac{|z_n|}{z_n}, \ z \in \mathbb{D}.$$

О свойствах произведения Бляшке можно читать например в книгах [1], [2]. М. М. Джрбашяном [3, глава IX] введены в рассмотрение классы N_{α} $\left(-1<\alpha<+\infty\right)$ мероморфных в единичном круге функций и установлено их параметрическое представление.

Класс $N_{\alpha}\left(-1<\alpha<+\infty\right)$ определяется посредством α -характеристики $T_{\alpha}\left(r,F\right)=m_{\alpha}\left(r,F\right)+N_{\alpha}\left(r,F\right)$ как множество тех мероморфных в круге $\left|z\right|<1$ функций $F\left(z\right)$, для которых

$$\sup_{0 < r < 1} \left\{ T_{\alpha} \left(r, F \right) \right\} < +\infty.$$

При этом функции $m_{\alpha}(r,F)$, $N_{\alpha}(r,F)$ и $T_{\alpha}(r,F)$ представляют своеобразные аналоги известных неванлинновских функций m(r,F), N(r,F) и T(r,F), совпадая с ними при значении параметра $\alpha=0$, так что класс N_0 совпадает с классов N Неванлинны.

Вместе с тем, важной особенностью классов N_{α} является то обстоятельство, что для любых значений $-1 < \alpha_1 < \alpha_2 < +\infty$ имеет место строгое включение $N_{\alpha_1} \subset N_{\alpha_2}$ и, в частности

$$N_{\alpha} \subset N_0 = N, \left(-1 < \alpha < 0\right)$$
.

Оператор интегродифференцирования $D^{-\alpha}$ (при $-1 < \alpha < +\infty$) в смысле Риммана – Лиувилля с началом в нулевой точке определяется следующим образом:

$$D^{-\alpha} \left\{ \varphi(r) \right\} = \frac{1}{\Gamma(\alpha)} \int_{0}^{r} (r - t)^{\alpha - 1} \varphi(t) dt, \quad (0 < \alpha < +\infty),$$

$$D^{0} \left\{ \varphi(r) \right\} = \varphi(r),$$

$$D^{-\alpha} \left\{ \varphi(r) \right\} = \frac{d}{dr} D^{-(1 + \alpha)} \left\{ \varphi(r) \right\}, \quad (-1 < \alpha < 0).$$

Для аналитических функций принадлежащих классу N_{α} функция $T_{\alpha}\left(r,F\right)$ определяется следующим образом:

$$T_{\alpha}\left(r,f\right) = \int_{-\pi}^{\pi} D_{(+)}^{-\alpha} \log \left| f\left(re^{i\theta}\right) \right| d\theta,$$

где

$$D_{(+)}^{-\alpha}\left\{\varphi\left(r\right)\right\} == \max\left\{D^{-\alpha}\left\{\varphi\left(r\right)\right\};0\right\}.$$

Известно, что аналитическая функция класса N_{α} имеет вид:

$$f(z) = e^{i\gamma + \lambda k_{\alpha}} z^{\lambda} B_{\alpha}(z; \{a_n\}) \exp \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} s_{\alpha} (e^{-i\theta} z) d\psi(\theta) \right\},$$

где γ -произвольное вещественное число, λ - произвольное натуральное число, $K_{\alpha} = \alpha \sum_{i=1}^{\infty} \frac{1}{n(n+\alpha)}$, $\psi(\theta)$ - вещественная функция с конечным полным изменением на $[-\pi,\pi]$,

$$B_{\alpha}(z; \{a_n\}) = \prod_{n=1}^{\infty} \left(1 - \frac{z}{a_n}\right) e^{-W_{\alpha}(z; a_n)},$$

$$W_{\alpha}(z, \xi) = \int_{|\xi|}^{1} \frac{(1-x)^{\alpha}}{x} dx - \sum_{k=1}^{\infty} \frac{\Gamma(1+\alpha+k)}{\Gamma(1+\alpha)\Gamma(1+k)} \left[\xi^{-k} \int_{0}^{|\xi|} (1-x)^{\alpha} x^{k-1} dx - \overline{\xi}^{k} \int_{|\xi|}^{1} (1-x)^{\alpha} x^{k-1} dx \right] z^{k}, |z| < 1, |\xi| < 1,$$

$$S_{\alpha}(z) = \frac{1}{\Gamma(1+\alpha)} \left[\frac{2}{(1-z)^{1+\alpha}} - 1 \right], |z| < 1.$$

Функция $S_{\alpha}\left(z\right)$ называется ядром Джрбашяна типа Шварца. Re $S_{\alpha}\left(z\right)$ называется ядром Джрбашяна типа Пуассона. При $\alpha = 0$ эти ядра совпадают с ядрами Шварца и Пуассона соответ-

 $B_{lpha}\left(z;\left\{a_{n}
ight\}
ight)$ называется произведением Джрбашяна. В специальном случае $\,lpha=0\,$ произведение $\,B_{lpha}$ совпадает с произведением Бляшке.

$$B_0(z;\{a_n\}) = B(z;\{a_n\}) = \prod_{n=1}^{\infty} \frac{a_n - z}{1 - \overline{a_n}z} \frac{|a_n|}{a_n}.$$

В работе [4] М. М. Джрбашяну и В. С. Захаряну удалось доказать следующее утверждение.

Теорема. (О взаимосвязи произведений B_{α} и B). При условии

$$\sum_{n=1}^{\infty} \left(1 - \left| a_n \right| \right)^{1+\alpha} < +\infty, \quad \left(-1 < \alpha < 0 \right)$$

имеет место представление:

$$B_{\alpha}\left(z;\left\{a_{n}\right\}\right) = B\left(z;\left\{a_{n}\right\}\right) \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} s_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\},\,$$

где $_{\omega}(\theta)$ - невозрастающая функция ограниченной вариации на $[0,2\pi]$ имеющая вид:

$$\omega(\theta) = \lim_{n \to \infty} \int_{0}^{\theta} D^{-\alpha} \log \left| \frac{B_{\alpha} \left(r_{n} e^{i\theta}; \{a_{n}\} \right)}{B\left(r_{n} e^{i\theta}; \{a_{n}\} \right)} \right| d\theta$$

$$\left(0 < r_{1} < r_{2} < \dots < r_{n} < \dots, r_{n} \uparrow 1 \right).$$

Основные результаты

Лемма 1. Пусть $-1 < \alpha < 0$ и пусть последовательность $\{z_n\} \subset \mathbb{D}$ такая, что

$$\sum_{n=1}^{\infty} \left(1 - \left| Z_n \right| \right)^{1+\alpha} < +\infty.$$

Тогда если произведение $B_{\alpha}\left(z,\left\{z_{n}\right\}\right)$ не принадлежит классу D_{β}^{2} , $0<\beta+1<2$, то этому классу не принадлежит также произведение $\ B_{\alpha}^{*}=\widetilde{B}_{\alpha}\cdot B_{\alpha}$, где

$$\tilde{B}_{\alpha}\left(z;\left\{z_{k}\right\}\right)=\prod_{k=1}^{N}b_{\alpha}\left(z;z_{k}'\right)$$

конечное произведение Джрбашяна $\{\{z_k'\}_{k=1}^N \subset \mathbb{D}\}$.

Доказательство. Из вида произведения B_{α}^{*} следует, что

$$\left|\left(B_{\alpha}^{*}\right)'\right| \geq \left\|\tilde{B}_{\alpha}' \cdot B_{\alpha}\right| - \left|B_{\alpha}' \cdot \tilde{B}_{\alpha}\right\|.$$

Значит

$$\left|\left(B_{\alpha}^{*}\right)'\right|^{2} \geq \left|B_{\alpha}' \cdot \tilde{B}_{\alpha}\right|^{2} - 2\left|B_{\alpha}' \cdot \tilde{B}_{\alpha}\right| \cdot \left|\tilde{B}_{\alpha}' \cdot B_{\alpha}\right| + \left|\tilde{B}_{\alpha}' \cdot B_{\alpha}\right|^{2}.$$

Следовательно, имея ввиду что $\left| \tilde{B}'_{a} \cdot B_{a} \right| \leq 1$, будем иметь

$$\int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| \left(B_{\alpha}^{*} \right)' \right|^{2} d\varphi dr \ge \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}' \cdot \tilde{B}_{\alpha} \right|^{2} d\varphi dr -$$

$$-2 \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}' \right| \cdot \left| \tilde{B}_{\alpha}' \right| d\varphi dr + \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{2} \left| \tilde{B}_{\alpha}' \cdot B_{\alpha} \right|^{2} d\varphi dr . \tag{1}$$

Так как \tilde{B}_{α} - конечное произведение Джрбашяна, то нетрудно установить, что

$$\int_{0}^{1} \int_{0}^{2\pi} \left(1 - r\right)^{\beta} \left| B_{\alpha}' \cdot \tilde{B}_{\alpha} \right|^{2} d\varphi dr \ge C_{1} \int_{0}^{1} \int_{0}^{2\pi} \left(1 - r\right)^{\beta} \left| B_{\alpha}' \right|^{2} d\varphi dr. \tag{2}$$

Пусть $1 , <math>\frac{1}{p} + \frac{1}{q} = 1$. Пользуясь неравенством Юнга (см [5], стр. 53) будем иметь

$$\begin{split} 2\int\limits_{0}^{1}\int\limits_{0}^{2\pi}\left(1-r\right)^{\beta}\left|B'_{\alpha}\right|\cdot\left|\tilde{B}'_{\alpha}\right|d\varphi dr &\leq \frac{2}{p}\int\limits_{0}^{1}\int\limits_{0}^{2\pi}\left(1-r\right)^{\beta}\left|B'_{\alpha}\left(re^{i\varphi};\left\{z_{n}\right\}\right)\right|^{p}d\varphi dr + \\ &+\frac{2}{q}\int\limits_{0}^{1}\int\limits_{0}^{2\pi}\left(1-r\right)^{\beta}\left|\tilde{B}'_{\alpha}\left(re^{i\varphi};z'_{n}\right)\right|^{q}d\varphi dr \;. \end{split}$$

Второй интеграл правой части последнего неравенства конечен, так как \tilde{B}_{α} - конечное произведение. Значит

$$2\int_{0}^{1}\int_{0}^{2\pi} (1-r)^{\beta} |B'_{\alpha}| \cdot |\tilde{B}'_{\alpha}| d\varphi dr \le \frac{2}{p} \int_{0}^{1}\int_{0}^{2\pi} (1-r)^{\beta} |B'_{\alpha}(re^{i\varphi}; \{z_{n}\})|^{\beta} d\varphi dr + C_{2}$$
(3)

Из (1) пользуясь неравенствами (2) и (3) получаем:

$$\int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| \left(B_{\alpha}^{*} \right)' \right|^{2} d\varphi dr \ge C_{1} \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}' \left(re^{i\varphi}, \{z_{n}\} \right) \right|^{2} d\varphi dr - \frac{2}{p} \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}' \left(re^{i\varphi}, \{z_{n}\} \right) \right|^{p} d\varphi dr - C_{2}, \tag{4}$$

где $1 , <math>C_1$ и C_2 – некоторые положительные числа.

Так как B_{α} не принадлежит классу D_{β}^2 , то

$$\int_{0}^{1} \int_{0}^{2\pi} \left(1-r\right)^{\beta} \left| B_{\alpha}'\left(re^{i\varphi};\left\{z_{n}\right\}\right) \right|^{2} d\varphi dr = +\infty.$$

Далее, нетрудно установить, что

$$C_{1} \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}^{\prime} \left(re^{i\varphi}; \{z_{n}\} \right) \right|^{2} d\varphi dr - \frac{2}{p} \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}^{\prime} \left(re^{i\varphi}; \{z_{n}\} \right) \right|^{p} d\varphi dr - C_{2} \ge C_{3} \int_{0}^{1} \int_{0}^{2\pi} (1-r)^{\beta} \left| B_{\alpha}^{\prime} \left(re^{i\varphi}; \{z_{n}\} \right) \right|^{2} d\varphi dr.$$

Из (4), пользуясь последним неравенством и следует справедливость утверждения леммы.

Теорема 1. Пусть $-1 < \alpha \le 0$ и пусть последовательность $\{z_n\} \subset \mathbb{D}$ такая, что

$$\sum_{n=1}^{\infty} \left(1 - \left| z_n \right| \right)^{1+\alpha} < +\infty.$$

Тогда если произведение $B_{\alpha}\left(z;\left\{z_{n}\right\}\right)$ имеет конечный интеграл Дирихле, то B_{α} является конечным произведением.

Доказательство. Как было отмечено выше, в специальном случае $\alpha=0$ произведения Джрбашяна и Бляшке совпадают. Для произведений Бляшке теорема доказана в [6, стр. 176]. Теперь пусть $-1 < \alpha < 0$. Из леммы 1 следует, что можно предполагать что последовательность $\{z_n\}$ такая, что

$$\exp\left\{-\frac{2\alpha^2}{(1+\alpha)(2+\alpha)}\sum_{n=1}^{\infty}\left(1-\left|z_n\right|\right)^{1+\alpha}\right\} \leq \frac{q}{2},$$

где \emptyset - некоторое положительное число. В работе [7] доказано, что при $-1 \le \alpha \le 0$ имеет место неравенство:

$$\left|B_{\alpha}\left(z;\left\{z_{n}\right\}\right)\right| \leq \exp\left\{-\frac{2\alpha^{2}}{\left(1+\alpha\right)\left(2+\alpha\right)}\sum_{n=1}^{\infty}\left(1-\left|z_{n}\right|\right)^{1+\alpha}\right\} \cdot \left|B\left(z;\left\{z_{n}\right\}\right)\right|.$$

Значит справедливо следующее неравенство:

$$\left| B_{\alpha} \left(z; \left\{ z_{n} \right\} \right) \right| \leq \frac{q}{2} \left| B \left(z; \left\{ z_{n} \right\} \right) \right| \tag{5}$$

Из теоремы о взаимосвязи произведений Джрбашяна и Бляшке, имеем:

$$B_{\alpha}\left(z;\left\{z_{n}\right\}\right) = B\left(z;\left\{z_{n}\right\}\right) \cdot \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\},\,$$

где $\omega(\theta)$ - невозрастающая функция конечной вариации на $[0,2\pi]$. Значит

$$B'_{\alpha}\left(z;\left\{z_{n}\right\}\right) = B'\left(z;z_{n}\right) \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\} + B_{\alpha}\left(z;\left\{z_{n}\right\}\right) \cdot \frac{1}{2\pi} \int_{0}^{2\pi} S'_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right).$$

Откуда следует справедливость следующего неравенства:

$$\left|B'_{\alpha}\left(z;\left\{z_{n}\right\}\right)\right| \geq \left|B'\left(z;\left\{z_{n}\right\}\right)\exp\left\{\frac{1}{2\pi}\int_{0}^{2\pi}S_{\alpha}\left(e^{-i\theta}z\right)d\omega\left(\theta\right)\right\}\right| - \left|B_{\alpha}\left(z;\left\{z_{n}\right\}\right)\frac{1}{2\pi}\int_{0}^{2\pi}S'_{\alpha}\left(e^{-i\theta}z\right)d\omega\left(\theta\right)\right|.$$

Следовательно, учитывая неравенство (5) и пользуясь неравенством Юнга при p=q=2, получаем:

$$\left|B_{\alpha}'\left(z;\{z_{n}\}\right)\right|^{2} \geq \left|B'\left(z;\{z_{n}\}\right) \cdot \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right|^{2} - \\ -2\left|B'\left(z;\{z_{n}\}\right) \cdot \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right| \cdot \left|B_{\alpha}\left(z;\{z_{n}\}\right)\right| \cdot \left|\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}'\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right| + \\ +\left|B_{\alpha}\left(z;\{z_{n}\}\right)\right|^{2} \cdot \left|\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}'\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right|^{2} \geq \left|B'\left(z;\{z_{n}\}\right) \cdot \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right|^{2} - \\ -q\left|B'\left(z;\{z_{n}\}\right)\right| \cdot \left|\exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right| \cdot \left|\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}'\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right| + \\ +\left|B_{\alpha}\left(z;\{z_{n}\}\right)\right|^{2} \cdot \left|\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}'\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right|^{2} \geq \\ \geq \frac{1}{2}\left|B'\left(z;\{z_{n}\}\right) \cdot \exp\left\{\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right|^{2} + \left(\left|B_{\alpha}\left(z;\{z_{n}\}\right)\right|^{2} - \frac{q^{2}}{2}\right)\left|\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}'\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right|^{2}.$$
Умножая полученное неравенство на $\left|\exp\left\{-\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right|^{2}$ будем иметь:
$$\left|\exp\left\{-\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}\left(e^{-i\theta}z\right) d\omega\left(\theta\right)\right\}\right|^{2} \left|B_{\alpha}'\left(z;\{z_{n}\}\right)\right|^{2} \geq \frac{1}{2}\left|B'\left(z;\{z_{n}\}\right)\right|^{2} + \right|$$

$$+ \left(\left| B_{\alpha} \left(z; \left\{ z_{n} \right\} \right) \right|^{2} - \frac{q^{2}}{2} \right) \cdot \left| \frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}' \left(e^{-i\theta} z \right) d\omega \left(\theta \right) \right|^{2} \cdot \left| \exp \left\{ -\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}' \left(e^{-i\theta} z \right) d\omega \left(\theta \right) \right\} \right|^{2}.$$

Интегрируя обе части последнего неравенства получаем:

$$\int_{0}^{1} \int_{0}^{2\pi} \left| B_{\alpha}' \left(re^{i\varphi}; \{z_{n}\} \right) \right|^{2} \cdot \left| \exp \left\{ -\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha} \left(re^{i(\varphi-\theta)} \right) d\omega \left(\theta \right) \right\} \right|^{2} d\varphi dr \ge \frac{1}{2} \int_{0}^{1} \int_{0}^{2\pi} \left| B' \left(re^{i\varphi}; \{z_{n}\} \right) \right|^{2} d\varphi dr +$$

$$+ \int_{0}^{1} \int_{0}^{2\pi} \left(\left| B_{\alpha} \left(re^{i\varphi}; \{z_{n}\} \right) \right|^{2} - \frac{q^{2}}{2} \right) \cdot \left| \frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}' \left(re^{i(\varphi-\theta)} \right) d\omega \left(\theta \right) \right|^{2} \cdot \left| \exp \left\{ -\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha} \left(re^{i(\varphi-\theta)} \right) d\omega \left(\theta \right) \right\} \right|^{2} d\varphi dr . \tag{6}$$

Нетрудно установить, что для любого значения r , 0 < r < 1 , число q можно подобрать таким образом, чтобы

$$\int_{0}^{2\pi} \left(\left| B_{\alpha} \left(re^{i\varphi}; \left\{ z_{n} \right\} \right) \right|^{2} - \frac{q^{2}}{2} \right) \cdot \left| \frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha}' \left(re^{i(\varphi-\theta)} z \right) d\omega \left(\theta \right) \right| \cdot \left| \exp \left\{ -\frac{1}{2\pi} \int_{0}^{2\pi} S_{\alpha} \left(re^{i(\varphi-\theta)} z \right) d\omega \left(\theta \right) \right| \right| d\varphi > 0$$

Следовательно из (6) будем иметь:

$$\begin{split} \frac{1}{2} \int\limits_{0}^{1} \int\limits_{0}^{2\pi} \left| B'\left(re^{i\varphi}; \left\{z_{n}\right\}\right) \right|^{2} d\varphi dr &\leq \int\limits_{0}^{1} \int\limits_{0}^{2\pi} \left| B'_{\alpha}\left(re^{i\varphi}; \left\{z_{n}\right\}\right) \right|^{2} \cdot \left| \exp\left\{-\frac{1}{2\pi} \int\limits_{0}^{2\pi} S_{\alpha}\left(re^{i(\varphi-\theta)}\right) d\omega\left(\theta\right) \right\} \right|^{2} d\varphi dr &\leq \\ &\leq \int\limits_{0}^{1} \int\limits_{0}^{2\pi} \left| B'_{\alpha}\left(re^{i\varphi}; \left\{z_{n}\right\}\right) \right|^{2} \left\{ 1 + \left| 1 - \exp\left[-\frac{1}{2\pi} \int\limits_{0}^{2\pi} \operatorname{Re} S_{\alpha}\left(re^{i(\varphi-\theta)}\right) d\omega\left(\theta\right) \right] \right\}^{2} d\varphi dr \;. \end{split}$$

Отсюда, имея ввиду, что когда $Rez \ge 0$, то имеет место следующее неравенство:

$$\left|1-e^{-z}\right| \leq \left|z\right|,$$

и вспоминая, что $\operatorname{ReS}_{\alpha}(z) \ge 0$ при $-1 < \alpha \le 0$, получаем:

$$\frac{1}{2} \int_{0}^{1} \int_{0}^{2\pi} \left| B'\left(re^{i\varphi}; \left\{z_{n}\right\}\right) \right|^{2} d\varphi dr \leq \int_{0}^{1} \int_{0}^{2\pi} \left| B'_{\alpha}\left(re^{i\varphi}; \left\{z_{n}\right\}\right) \right|^{2} \left\{ 1 + \left| \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} S_{\alpha}\left(re^{i(\varphi-\theta)}\right) d\omega\left(\theta\right) \right| \right\}^{2} d\varphi dr \tag{7}$$

Так как $\exp\left\{\frac{1}{2\pi}\int\limits_{0}^{2\pi}S_{\alpha}\left(e^{-i\theta}z\right)d\omega\left(\theta\right)\right\}\in N_{\alpha}$ (см. [3, гл. IX]), следует, что функция

 $\frac{1}{2\pi}\int\limits_0^{2\pi}S_{\alpha}\left(e^{-i\theta}z\right)d\omega\left(\theta\right)$ везде на окружности имеет конечный предел, кроме, быть может, некоторого

множества E , для которой $Cap_{1+\alpha}E=0$ (см. [8]). Пользуясь этим фактом, нетрудно установить справедливость следующего неравенства:

$$\frac{1}{2}\int\limits_{0}^{1}\int\limits_{0}^{2\pi}\left|B'\left(re^{i\varphi};\left\{z_{n}\right\}\right)\right|^{2}d\varphi dr\leq C\int\limits_{0}^{1}\int\limits_{0}^{2\pi}\left|B'_{\alpha}\left(re^{i\varphi};\left\{z_{n}\right\}\right)\right|^{2}d\varphi dr$$

Отсюда и следует справедливость утверждения теоремы.

Из этой теоремы, если $f(z) = \sum_{n=1}^{\infty} a_n z^n$, то

$$\frac{1}{\pi} \iint_{|z|<1} \left| f'(z) \right|^2 dx dy = \sum_{n=1}^{\infty} n \left| a_n \right|^2$$

следует справедливость следующего утверждения.

Теорема 2. Пусть $-1 < \alpha \le 0$ и пусть последовательность $\{z_n\} \subset \mathbb{D}$ удовлетворяет условию Бляшке-Джрбашяна. Тогда коэффициенты Тейлора любого бесконечного произведения $B_{\alpha}\left(z;\left\{z_n\right\}\right)$ удовлетворяют условию:

$$\sum_{n=1}^{\infty} \left| \mathcal{B}_{\alpha}(n) \right|^2 n = +\infty.$$

Теорема 3. Пусть $-1 < \alpha \le 0$ и пусть последовательность $\{z_n\} \subset \mathbb{D}$ удовлетворяет условию Бляшке-Джрбашяна. Тогда производное бесконечного произведения $B_{\alpha}\left(z;\left\{z_{n}\right\}\right)$ не принадлежит класси H^1 .

Утверждение теоремы следует из следующего факта: $H^1 \subset A_0^2$.

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА в рамках научного проекта № 15Т-1А083.

Литература

1. Привалов И.И. Граничные свойства аналитических функций / И.И. Привалов. – М.– Л: Гос. изд. технико-теоретический лит., 1950.

Privaloy I.I. Boundery properties of analytical functions / I.I. Privaloy. – GITTL, 1950.

- 2. Duren P.L. Theory of H^P Spaces / P.L. Duren; Academic Puss. New York-London, 1970.
- 3. Джрбашян М.М. Интегральные преобразования и представления функций в комплексной области / М.М. Джрбашян. – М.: Havka, 1966.

Dirbashyan M.M. Integral transformations and representations of functions on the complex domain / M.M. Djrbashyan. - M.: Nauka, 1966.

4. Джрбашян М.М. О факторизации функций B_{α} / М.М. Джрбашян, В.С. Захарян // Мат. заметки. - 1968. - Т. 4. - №1. - С. 3-10.

Djrbashyan M.M. On factorization of functions B_{α} / M.M. Djrbashyan, V.S. Zakaryan // Mat. Zametki. - 1968. - Vol 4. - №1. - P. 3-10.

5. Колмогоров А.Н. Элементы теории функций и функционального анализа / А.Н. Колмогоров, С.В. Фомин. - М.: Наука, 1981.

Kolmogorov A.N. Elements theory of functions and functional analysis / A.N. Kolmogorov, S.V. Fomin. – M.: Nauka, 1981.

- 6. Kim H.O. Derivatives of Blashke products / H.O. Kim // Pacific journal of Math. Vol. 114. -
- 7. Захарян В.С. Об одной оценке для произведения М.М. Джрбашяна / В.С. Захарян // Изв. АН Арм. ССР, Математика. – Т. XXIII. – № 2. – 1988.

Zakaryan V.S. On an estimation for Djrbashyan's product / V.S. Zakaryan // IAN Arm SSR, Matematika. - Vol. XXIII. - № 2. - 1988.

8. Захарян В.С. О радиальных предельных значениях функции B_{α} / В.С. Захарян // Изв. АН Арм. ССР, Математика. - Т. 3. - № 4-5. - 1968.

Zakaryan V.S. On radial boundary values of functions B_{α} / V.S. Zakaryan // IAN Arm SSR, Matematika. – Vol. 3. – № 4-5. – 1968.