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Abstract—The movement of charged particles in a crystal can be both regular and chaotic. At the quantum
level, chaos manifests itself in the statistical properties of the set of energy levels. Systems, in which regions of
regular motion are separated in the phase space by a region of dynamic chaos, are of particular interest. The
statistics of the energy levels of such systems substantially depends on the possibility of tunneling between
phase-space domains that are dynamically isolated from each other. Consideration of this effect leads to the
Podolskiy–Narimanov distribution function. In this study, we estimate the matrix elements of such tunneling
transitions in the problem of the transverse motion of positrons with energies of 20 and 40 GeV, which are
transmitted in the axial channeling mode in the [100] direction of a silicon crystal. The Podolskiy–Nari-
manov distribution parameter is found on the basis of this estimate, and it is shown that the former actually
describes the statistics of the distances between neighboring energy levels of the transverse motion.
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INTRODUCTION
The statistical properties of the set of energy levels

of a quantum system that is chaotic in the classical
limit differ sharply from those for an integrable system
with regular dynamics [1–4]. These differences are
due to the fact that the energy levels of an integrable
system do not interact with each other, while there is
interaction between the energy levels of a nonintegra-
ble (chaotic in the classical limit) system, which leads to
their mutual repulsion. As a consequence, distances s
between adjacent energy levels of the system in the latter
case are described by Wigner’s distribution function

(1)
where the average interlevel distance in an array is
assumed to be normalized to one, while the distribu-
tion function in the case of an integrable system has an
exponential form that is typical for a Poisson flow of
events and expressed as follows:

(2)
The manifestations of dynamic chaos in electron

tunneling [5, 6] were studied in [7–11] for the case of
channeling near the [110] direction of a silicon crystal.
In this case, pairs of neighboring atomic chains create
a double-well potential, above the saddle point of

which the motion of electrons turns out to be almost
completely chaotic. It was found that the statistical
properties of the levels in this region are well described
by Wigner’s distribution (1).

There is a more complicated case when the classi-
cal dynamics of a particle turns out to be regular for
some initial conditions and chaotic for others for a
given energy value, while the regions of regular motion
are separated in the phase space by a region of
dynamic chaos (for example, such a situation is sub-
stantiated when an electron moves near the [100]
direction of a silicon crystal [12, 13]). It was assumed
in [14] that regular and chaotic domains generate two
sequences of levels independent of each other (with
the relative level densities ρ1 and ρ2, ρ1 + ρ2 = 1),
which leads to the Berry–Robnik distribution
expressed as follows:

(3)

where
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Fig. 1. Potential energy (7) of a positron moving near the
[100] direction of a silicon crystal.
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However, tunneling between phase-space domains
that are dynamically isolated from each other will lead
to the interaction of energy levels generated by states
localized in such domains. In this case, tunneling
between two regular domains can occur in two ways,
for example, as described in [15, 16]. Direct tunneling
is an unlikely first-order process described by a
dimensionless amplitude (the same as s) with a char-
acteristic value of VRR ! 1. Along with this, a second-
order process called chaos-assisted tunneling (CAT) is
possible, in which the particle first tunnels only
beyond the limits of its own regular domain, and this
process is described by the VRC constant. A particle
picked up by a chaotic f low can find itself near the
boundary of another regular domain, in which it tun-
nels inwards with the amplitude VRC. Thus, this is a
second-order process, the resulting amplitude of
which is  ~ VRR ! 1 [17].

A theory that takes into account the effects of tun-
neling transitions on the statistics of the levels was pro-
posed in [17]; this leads to the Podolskiy–Narimanov
distribution

(5)

where

(6)

The technique for estimating the matrix elements of
such transitions (from the values of which the VRC
parameter is extracted) was described in [18]. In this
study, we analyze the statistics of the interlevel dis-
tances of the energy of the transverse motion of high-
energy positrons (20 and 40 GeV) for the case of chan-
neling in the [100] direction of a silicon crystal. It has
been established that the Podolskiy–Narimanov
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function (5) well describes the distribution of the
interlevel distances, and the parameter in this distribu-
tion corresponds to the found average value of the
matrix elements of tunneling transitions.

CALCULATION TECHNIQUES
The motion of a relativistic particle at a small angle

to the crystallographic axis densely packed with atoms
in a crystal can be described as two-dimensional
motion in a transverse (with respect to this axis) plane
under the influence of continuous potentials averaged
along atomic chains that are perpendicular to this
plane with conservation of the longitudinal compo-
nent p|| of the particle momentum. In the (100) plane
of a silicon crystal, such chains form a square lattice
with a period of a ≈ 1.92 Å. For a positron, the contin-
uous potential of the chain is repulsive, and a small
potential well appears near the center of the square, at
the vertices of which there are four chains in the posi-
tions closest to each other (Fig. 1). In this well, the
finite motion of a positron is possible in the transverse
plane, which is called axial channeling [5, 6]. Taking
into account the contributions of these four chains,
the potential energy of the positron is described by the
following sum:

(7)

where a constant is added to make the potential equal
to zero at the center of the cell. The continuous poten-
tial of an individual atomic chain is approximated by
the folowing formula [5]:

(8)

where U0 = 66.6 eV, α = 0.48, β = 1.5, and R = 0.194 Å
(the Thomas–Fermi radius) for the [100] chain of a
silicon crystal. The quantum description of axial
channeling is given by the two-dimensional
Schrödinger equation, in which the  parameter
plays the role of the mass of the particle, and

 is the energy of longitudinal
motion [5].

In this study, the channeling of positrons with
energies E| | of 20 and 40 GeV is considered. The eigen-
values (energy levels of channeled positrons) and
eigenfunctions of the Hamiltonian were numerically
found using the so-called spectral method [19], the
details of which as regards the channeling problem are
described in [7–10].

The technique for estimating the relative contribu-
tion of regular dynamics regions ρ1 to the average
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Fig. 2. Relative contribution of regular dynamics domains
to the semiclassical density of levels in interval (9) for pos-
itrons with energies E| | of 20 (circles) and 40 GeV (dots).
The solid horizontal line marks the weighted average value
(10) of this quantity, and the dashed line marks value (13),
which satisfies the maximum likelihood criterion.
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Table 1. Number of states belonging to different types
of symmetry and the average distance between energy levels
in interval (9)

Symmetry type , eV

 GeV

24 0.009312

23 0.010102

22 0.010483

24 0.0099168

 GeV

47 0.0048609

46 0.0050508

44 0.0052105

48 0.0048027

kN kD

=| | 20E

1A

2A

1B

2B

=| | 40E

1A

2A

1B

2B
semiclassical density of energy levels is described in
[12, 13]. A region with

(9)

was selected for analysis, in which the ρ1 value is
approximately constant (Fig. 2), as required for the
applicability of distributions (3) and (5). This value is
approximately 0.313 for positrons with E|| = 20 GeV, and
about 0.285 for positrons with an energy of E|| = 40 GeV.
The weighted average value in this region is

(10)
The uncertainty of the estimate is due to the com-

plexity of taking into account the contribution of small
domains of regular dynamics in the phase space of a
channeled particle.

Since potential (7) has square symmetry, all avail-
able states of transverse motion can be classified
according to irreducible representations of the D4
group (or the isomorphic C4v group, see for example,
in [20]) as a function of the symmetry type of the wave
function. This group has four one-dimensional irre-
ducible representations, denoted as A1, A2, B1, and B2,
which correspond to nondegenerate energy levels, and
one two-dimensional representation E corresponding
to doubly degenerate levels. We will analyze further
only nondegenerate levels. We emphasize that the
interlevel distances should be singled out for the states
of each of the four types of symmetry independently
[3], normalized to a unit average interlevel distance,
and only then the data should be combined for statis-
tical analysis.

We also emphasize that the quantum-chaos theory
describes f luctuations in the distribution of levels that
change relatively smoothly with a change in the aver-
age density of states [2]. To isolate these f luctuations,
the initial sequence of energy levels is subjected to the
unfolding procedure [2, 4], which results in a new
sequence of levels that automatically has a unit-aver-
age interlevel distance. It is for such sequences that
distributions (1)–(3) and (5) are formulated. How-
ever, the average density of states is practically
unchanged within small interval (9), which makes it
possible to omit the deployment procedure. Instead,
we only normalize each of the initial sequences of lev-
els by the average value of the interlevel distance D in
it (see Table 1).

The technique used for estimating the amplitudes
of tunneling transitions Vij is described in [18]. The
found amplitudes also need to be normalized to the
average interlevel distance. However, given that tun-
neling transitions occur between the superpositions of
states with a certain type of symmetry (A1, A2, B1, and B2),
as shown in [18], the weighted average from all four Dk
values for given E| | should be used for normalization.
This value is D = 0.0099 for E| | = 20 GeV and D =
0.0050 for E| | = 40 GeV. In accordance with the above,

⊥≤ ≤1.2 1.43 eV,E

+
−ρ = 0.021

1 0.0130.294 .
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the VRC parameter in the Podolskiy–Narimanov dis-
tribution (5) should be set equal to the square root of
the average of the absolute value of the found ampli-
tudes, normalized to the unit interlevel distance, as
follows:

(11)

For the set of arrays of energy levels of transverse
motion in interval (9), this value was

(12)

= .RC ijV V D

= 0.1548.RCV
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Fig. 3. Distribution of interlevel distances in interval (9) for
positrons with energies E| | of 20 and 40 GeV (histogram)
and theoretical curves corresponding to the Wigner (1)

(dash-and-dotted line;  and p = 0), Poisson

(2) (dashed line;  and p = 0.00298), Berry–

Robnik (3) (dashed line;  and p = 0.17915),

and Podolskiy–Narimanov (5) (solid line; 
and p = 0.46083) distributions.
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Fig. 4. Berry–Robnik and Podolskiy–Narimanov distri-
butions with parameters (10) and (12), as in Fig. 3 (bold
lines), and with parameters (13) and (14) found by the
maximum likelihood criterion (thin lines).
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RESULTS AND DISCUSSION

The distribution of interlevel distances in energy
interval (9) of the transverse motion for positrons with
energies E| | of 20 and 40 GeV, which are normalized to
the unit average in the manner described above, is
given as a histogram in Fig. 3. Curves corresponding to
predictions (1)–(3) and (5) are superimposed on the
histogram, and the value of the relative contribution of
regular dynamics domains to the semiclassical local
average density (10) of levels is substituted into the
Berry–Robnik distribution (3). Into the Podolsky–
Narimanov distribution (5), the value of parameter
VRC (12) is substituted in addition to this parameter
value. For these four distributions, the values of quan-
tity χ2 and the corresponding p values for 24 degrees of
freedom are also determined. One can see that the dis-
tribution of interlevel distances agrees well with the
prediction of Podolskiy–Narimanov theory [17].

It was also interesting to construct distributions (3)
and (5) with free parameters selected according to the
maximum likelihood criterion. The corresponding
graphs are shown in Fig. 4 by thin lines. For the
Berry–Robnik distribution, the result of fitting is as
follows:

(13)

In this case, the χ2 value and the corresponding p
values for 23 degrees of freedom (which takes into
account the presence of one fitting parameter) are as
follows:

( )ρ =1 0.376.fit
BR

χ = =2 26.1299, 0.2948.p
JOURNAL OF SURFACE INVESTIGATION: X-RAY, SYNCHRO
The fitting results for the Podolskiy–Narimanov dis-
tribution are as follows:

(14)

The χ2 value and the corresponding p values for
22 degrees of freedom (taking into account the pres-
ence of two fitting parameters) are as follows:

The similaratity of the curves corresponding to the
actual values of the system parameters and the curves
found by the maximum likelihood criterion also indi-
cates good agreement between the distribution of
interlevel distances in the considered system and the
predictions of quantum-chaos theory.

CONCLUSIONS
The channeling of positrons with energies of 20 and

40 GeV near the [100] direction of a silicon crystal is
studied. Numerical methods are used to find all energy
levels of the transverse motion of positrons and the wave
functions corresponding to them in interval (9) near the
upper edge of the potential well. The earlier developed
methods [12, 13, 18] are used to find the relative con-
tribution of regions of regular motion to the semiclas-
sical average density of energy levels and the probabil-
ity of tunneling transitions between such regions.
According to the prediction published in [17], the
presence of such transitions leads to the mutual repul-
sion of neighboring energy levels, which modifies the
distribution of interlevel distances.

The statistical analysis of the array of interlevel dis-
tances, which is performed in this study, shows that
the Podolskiy–Narimanov distribution [17] describes
the characteristic features of this array much better
than the Berry–Robnik distribution [14] as it does not
take into account chaos-assisted tunneling. Good
agreement of the actual distribution with the predic-
tions of the theory [17] is also evidenced by the close-

( ) ( )ρ = =1 0.389, 0.188.fit fit
RCPN PNV

χ = =2 19.2549, 0.6295.p
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ness of the values of the distribution parameters
extracted from analysis of the dynamics of the system
under consideration and the values selected by the
maximum likelihood criterion.
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