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Abstract—We study a discrete analogue on the Neumann boundary value problem for elliptic
pseudo-differential equation in a quadrant. This approach is based on a special factorization of
an elliptic symbol which permits to construct a general solution for a discrete pseudo-differential
equation in discrete analogues of Sobolev–Slobodetskii spaces. The discrete Neumann boundary
conditions are considered in the paper. Unique solvability of discrete Neumann boundary value
problem is proved and a comparison between discrete and continuous solutions is given.
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1. INTRODUCTION
The theory of pseudo-differential operators and related equations has started its development from

second half of last century [1, 2]. It was a convenient mathematical language to combine the theory
of partial differential equations and related boundary value problems and the theory of convolution
equations based on the distribution theory. At the same time there were certain discrete versions of
boundary value problems for partial differential equations [3, 4] and convolution equations [8, 9] including
one-dimensional singular integral equations [5–7]. It seems these discrete theories do not join although
it is not so for the continuous situation. Taking into account this problem the third author has suggested
to develop the discrete theory of pseudo-differential equations and boundary value problems and study a
possibility to apply this theory to approximate solution of continuous boundary value problems.

First, studies in this direction were devoted to multidimensional singular integral equations with
Calderon–Zygmund kernels [12]. We have worked with model symbols non-depending on a spatial
variable in canonical domains of Euclidean space in view of the local principle. In the theory, it means
that to obtain Fredholm property for a general equation in an arbitrary domain we need to describe
invertibility conditions for model operators in special canonical domains. These canonical domains are
cones, and we have started studying discrete pseudo-differential equations in different cones.

The case of whole discrete space was enough simple, but for a discrete half-space we need a periodic
analogue of factorization for an elliptic symbol [2]. We have described solvability conditions for discrete
pseudo-differential equations and some discrete boundary value problems [13–16] and have given a
comparison between discrete and continuous solution under small values of a parameter [17].

The typical conical case is more complicated and it requires a periodic analogue of wave factorization
for an elliptic symbol [10]. This concept uses elements of multidimensional complex analysis [11] in
difference from the half-space case in which the classical theory of Riemann boundary value problem
and one-dimensional singular integral equations could be applied [5–7].

In this paper, we consider a model discrete pseudo-differential equation in a quadrant, use a special
factorization for a symbol with a certain index and describe solvability conditions for the discrete
Neumann problem. Most principal point is a comparison between discrete and continuous solutions.
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ON DISCRETE NEUMANN PROBLEM 1019

2. AUXILIARIES: DISCRETE SPACES AND DIGITAL OPERATORS

In this section we introduce some notations and definitions which we will use in the paper. Basic
details can be found in the paper [15].

Let Z
2 be an integer lattice in a plane, and K = {x ∈ R

2 : x = (x1, x2), x1 > 0, x2 > 0}, Kd =
hZ2 ∩K,h > 0. We consider functions of a discrete variable ud(x̃), x̃ = (x̃1, x̃2) ∈ hZ2.

We also use the following notations: T
2 = [−π, π]2, � = h−1, ζ2 = ζ21 + ζ22 = h−2((e−ih·ξ1 − 1)2 +

(e−ih·ξ2 − 1)2), S(hZ2) for discrete analogue of the Schwartz space of infinitely differentiable rapidly
decreasing functions at infinity.

We introduce the discrete space Hs(hZ2) which consists of discrete functions and it is a closure of
the space S(hZ2) with respect to the norm

||ud||s =

⎛
⎝

∫

�T2

(1 + |ζ2|)s|ũd(ξ)|2dξ

⎞
⎠

1/2

, (1)

where ũd(ξ) denotes the discrete Fourier transform

(Fdud)(ξ) ≡ ũd(ξ) =
∑

x̃∈hZ2

eix̃·ξud(x̃)h
2, ξ ∈ �T

2.

The space Hs(Kd) consists of discrete functions from the space Hs(hZ2), and their supports belong
to Kd. Norm in the space Hs(Kd) is induced by norm of the space Hs(hZ2).

The Fourier image of the space Hs(Kd) is denoted by H̃s(Kd).

Let Ad(ξ) be a measurable periodic function defined in R
2 with the basic cube of periods �T

2.
Definition 1. A digital pseudo-differential operator Ad with the symbol Ad(ξ) in discrete

quadrant Kd is called the following operator

(Adud)(x̃) =
∑

ỹ∈hZ2

h2
∫

�T2

Ad(ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Kd. (2)

Here we will consider symbols, satisfying the condition

c1(1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2|)α/2 (3)

with positive constants c1, c2, that do not depend on h. This class of symbols satisfying (3) will be
denoted by Eα. The number α ∈ R is called an order of the digital pseudo-differential operator Ad.

We study solvability of the discrete equation

(Adud)(x̃) = 0, x̃ ∈ Kd, (4)

in the space Hs(Kd), and for this purpose we need certain specific domains of two-dimensional complex
space C

2.

Definition 2. A domain of the type Th(K) = �T
2 + iK is called a tube domain over the quadrant K.

We will work with holomorphic functions f(x+ iτ) in such tube domains Th(K). Let us note that a
lot of results of similar theory of holomorphic functions in radial tube domains over cones are presented
in the book [11].

Definition 3. Periodic wave factorization of the symbol Ad(ξ) ∈ Eα is called its representation in
the form Ad(ξ) = Ad, �=(ξ)Ad,=(ξ), where the factors Ad, �=(ξ), Ad,=(ξ) admit holomorphic continuation
into tube domains Th(K),Th(−K) respectively, satisfying the estimates

c1(1 + |ζ̂2|)æ
2 ≤ |Ad, �=(ξ + iτ)| ≤ c′1(1 + |ζ̂2|)æ

2 ,

c2(1 + |ζ̂2|)
α−æ

2 ≤ |Ad,=(ξ − iτ)| ≤ c′2(1 + |ζ̂2|)
α−æ

2 ,
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with positive constants c1, c′1, c2, c′2 non-depending on h;

ζ̂2 ≡ �
2
(
(e−ih(ξ1+iτ1) − 1)2 + (e−ih(ξ2+iτ2) − 1)2

)
, ξ = (ξ1, ξ2) ∈ �T

2, τ = (τ1, τ2) ∈ K.

The number æ ∈ R is called an index of periodic wave factorization.
Everywhere below we assume that we have this periodic wave factorization of the symbol Ad(ξ) with

the index æ. Using methods developed in [15], we can prove the following result.
Theorem 1. Let æ− s = n+ δ, n ∈ N, |δ| < 1/2. Then, a general solution of the equation (4)

has the following form

ũd(ξ) = A−1
d, �=(ξ)

(
n−1∑
k=0

c̃k(ξ1)ζ
k
2 + d̃k(ξ2)ζ

k
1

)
,

where c̃k(ξ1), d̃k(ξ2), k = 0, 1, · · · , n − 1, are arbitrary functions from H̃sk(hT), sk = s− æ+ k −
1/2. The a priori estimate

||ud||s ≤ const

n−1∑
k=0

([ck]sk + [dk]sk),

holds, where [·]sk denotes a norm in the space Hsk(hT), and const doesn’t depend on h.

3. DISCRETE NEUMANN PROBLEM
As we see a general solution of the equation (4) includes some arbitrary functions. In this section

we will assume that æ− s = 1+ δ, |δ| < 1/2, and will consider discrete boundary Neumann conditions.
For this case a general solution of the equation (4) has the form

ũd(ξ) = A−1
d, �=(ξ)(c̃0(ξ1) + d̃0(ξ2)), (5)

where c0, d0 ∈ Hs−æ−1/2(�Z) are arbitrary functions. To define these functions uniquely we add the
following conditions on angle sides

(Δ
(1)
1 ud)|x̃1=0

= fd(x̃2), (Δ
(1)
2 ud)|x̃2=0

= gd(x̃1); (6)

these conditions are discrete Neumann conditions. Let us remind [3, 15] that

(Δ
(1)
1 ud)(x̃) = h−1(ud(x1 + h, x2)− ud(x1, x2)), (Δ

(1)
2 ud)(x̃) = h−1(ud(x1, x2 + h)− ud(x1, x2)),

and their discrete Fourier transforms are
˜

(Δ
(1)
k ud)(ξ) = ζkũd(ξ), ζk = h−1(eih·ξk − 1), k = 1, 2.

Let us introduce
�π∫

−�π

ζ1A
−1
d, �=(ξ)dξ1 ≡ ã0(ξ2),

�π∫

−�π

ζ2A
−1
d, �=(ξ)dξ2 ≡ b̃0(ξ1).

If we assume that ã0(ξ2), b̃0(ξ1) �= 0, ∀ξ1 �= 0, ξ2 �= 0, then we can correctly define

F̃d(ξ2) = f̃d(ξ2)ã
−1
0 (ξ2), G̃d(ξ1) = g̃d(ξ1)b̃

−1
0 (ξ1),

k1(ξ) = ζ1A
−1
d, �=(ξ)ã

−1
0 (ξ2), k2(ξ) = ζ2A

−1
d, �=(ξ)b̃

−1
0 (ξ1).

Using new notations, we lead to the the following system of linear integral equations c̃0(ξ1), d̃0(ξ2)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�π∫
−�π

k1(ξ)c̃0(ξ1)dξ1 + d̃0(ξ2) = F̃d(ξ2)

c̃0(ξ1) +
�π∫

−�π

k2(ξ)d̃0(ξ2)dξ2 = G̃d(ξ1),

(7)
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with respect to unknowns functions c̃0(ξ1), d̃0(ξ2). Thus, we can suggest the following property for the
discrete Neumann problem (4), (6).

Theorem 2. If fd, gd ∈ Hs−3/2(R+), s > 3/2, inf |ã0(ξ2)| �= 0, inf |b̃0(ξ1)| �= 0, then the discrete
Neumann boundary value problem (4), (6) is equivalent to the system of linear integral equation
(7).

Proof. Let us apply the discrete Fourier transform to the discrete conditions (6). We obtain the
following Fourier images

�π∫

−�π

ζ1ũd(ξ1, ξ2)dξ1 = f̃d(ξ2),

�π∫

−�π

ζ2ũd(ξ1, ξ2)dξ2 = g̃d(ξ1). (8)

Taking into account (8) in the equality (5), we obtain the following relations
�π∫

−�π

ζ1ũd(ξ)dξ1 =

�π∫

−�π

ζ1A
−1
d, �=(ξ)c̃0(ξ1)dξ1 + d̃0(ξ2)

�π∫

−�π

ζ1A
−1
d, �=(ξ)dξ1,

�π∫

−�π

ζ2ũd(ξ)dξ2 = c̃0(ξ1)

�π∫

−�π

ζ2A
−1
d, �=(ξ)dξ2 +

�π∫

−�π

ζ2A
−1
d, �=(ξ)d̃0(ξ2)dξ2.

If we will remind our notations, then we obtain the required system (7). �

3.1. What We Know for Continuous Case

Here we discuss a similar approach for the continuous analogue of considered discrete Neumann
problem (4), (6). It also reduces to a system of linear integral equations by the fourier transform (all
details can be found in [10]).

We study the pseudo-differential equation

(Au)(x) = 0, x ∈ K, (9)

with the symbol A(ξ) satisfying the condition

c1(1 + |ξ|)α ≤ |A(ξ)| ≤ c2(1 + |ξ|)α (*)

and admitting the wave factorization with respect to K

A(ξ) = A�=(ξ)A=(ξ)

with the index æ, æ− s = 1 + δ, |δ| < 1/2. Then, we have a general solution

ũ(ξ) = A−1
�= (ξ)(C̃0(ξ1) + D̃0(ξ2))

with arbitrary functions C̃0(ξ1), D̃0(ξ2) ∈ H̃s−æ−1/2(R). These functions can be determined from the
following system of integral equations⎧⎪⎪⎨

⎪⎪⎩

∞∫
−∞

K1(ξ)C̃0(ξ1)dξ1 + D̃0(ξ2) = F̃ (ξ2),

C̃0(ξ1) +
∞∫

−∞
K2(ξ)D̃0(ξ2)dξ2 = G̃(ξ1),

(10)

if we use the Neumann boundary conditions(
∂u

∂x1

)
|x1=0 = f(x2),

(
∂u

∂x2

)
|x2=0 = g(x1) (11)

and assume that the system (10) has unique solution; additionally we need to require the following
conditions, namely inf |Ã0(ξ2)| �= 0, inf |B̃0(ξ1)| �= 0.
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The following notations are used here
∞∫

−∞

ξ1A
−1
�= (ξ)dξ1 ≡ Ã0(ξ2),

∞∫

−∞

ξ2A
−1
�= (ξ)dξ2 ≡ B̃0(ξ1),

F̃ (ξ2) = f̃(ξ2)Ã
−1
0 (ξ2), G̃(ξ1) = g̃(ξ1)B̃

−1
0 (ξ1),

K1(ξ) = ξ1A
−1
�= (ξ)Ã−1

0 (ξ2), K2(ξ) = ξ2A
−1
�= (ξ)B̃−1

0 (ξ1).

The following result is proved in the book [10].
Theorem 3. Let s > 3/2 and the symbol A(ξ) satisfies the condition (∗) and admits the wave

factorization with respect to K with the index æ such thatæ− s = 1+ δ, |δ| < 1/2. If the following
conditions

inf |Ã0(ξ2)| �= 0, inf |B̃0(ξ1)| �= 0, (**)

hold then the Neumann problem (9), (11) with boundary functions f, g ∈ Hs−3/2(R+) is equiva-
lent to the system of integral equations (10) with unknowns C̃0, D̃0 ∈ H̃s0(R).

4. DISCRETE AND CONTINUOUS

This section is devoted to a comparison of solutions (7) and (10) although these solutions are defined
in different spaces. We will consider truncations of integral operators from (10) on �T and then will
compare it with operator from (7). Here we will use very important result from [14] related to a general
concept of projectional methods.

Everywhere below we take into account that the condition (**) holds.

4.1. Properties of Integral Operators

Let us introduce the space Hs(R) of vector-functions f = (f1, f2), fj ∈ Hs(R), j = 1, 2, ||f ||s ≡
||f1||s + ||f2||s, and the following operators

K =

⎛
⎝K1 I

I K2

⎞
⎠ , k =

⎛
⎝k1 Ih

Ih k2

⎞
⎠ ,

which act in spaces Hs−æ−1/2(R) and Hs−æ−1/2(�T).
We consider here the case æ− s = 1 + δ, |δ| < 1/2 and, according to Theorem 1, we have s0 =

s− æ− 1/2.
Lemma 1. If s > 2, æ > 2, then the operator K is bounded in the space Hs0(R), K : Hs0(R) →

Hs0(R).

Proof. We consider the K1f since K2f is almost the same.

||K1f ||2s0 =
+∞∫

−∞

(1 + |ξ2|)2s0 |(K1f)(ξ2)|2dξ2 =
+∞∫

−∞

(1 + |ξ2|)2s0
∣∣∣∣∣∣

+∞∫

−∞

K1(ξ1, ξ2)f(ξ1)dξ1

∣∣∣∣∣∣

2

dξ2

≤
+∞∫

−∞

(1 + |ξ2|)2s0
⎛
⎝

+∞∫

−∞

|K1(ξ1, ξ2)||f(ξ1)|dξ1

⎞
⎠

2

dξ2

≤ const

+∞∫

−∞

(1 + |ξ2|)2s0
⎛
⎝

+∞∫

−∞

(1 + |ξ1|+ |ξ2|)−æ+1||f(ξ1)|dξ1

⎞
⎠

2

dξ2.
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Further, we apply Cauchy–Bunyakovskii inequality for the inner integral and add the factors (1 +
|ξ1|)−s0 and (1 + |ξ1|)s0 for the first term and the second one and use the inequality (1 + |ξ1|)−s0 ≤
(1 + |ξ1|+ |ξ2|)−s0 . Then, we have

||K1f ||2s0 ≤ const||f ||2s0

+∞∫

−∞

(1 + |ξ2|)2s0
⎛
⎝

+∞∫

−∞

(1 + |ξ1|+ |ξ2|)−2(s0+æ−1)dξ1

⎞
⎠ dξ2

≤ const||f ||2s0

+∞∫

0

(1 + |ξ2|)2s0
⎛
⎝

+∞∫

0

(1 + |ξ1|+ |ξ2|)−2s+3dξ1

⎞
⎠ dξ2

≤ const||f ||2s0

+∞∫

0

(1 + |ξ2|)2s0−2s+4dξ2 ≤ const||f ||2s0

+∞∫

0

(1 + |ξ2|)−2æ+3dξ2 ≤ const||f ||2,

since s > 2, æ > 2. �

We introduce new notations, the operator χh : Hs(R) → Hs(�T) is a restriction on the segment �T,
and the restriction operator on the segment �T in the vector-space Hs(R) will be denoted by Ξh so that
for f = (f1, f2) ∈ Hs(R) we can write Ξhf = (χhf1, χhf2). Of course, everywhere below we consider
the parameter h enough small, 0 < h < 1.

Lemma 2. For s > 2, æ > 2 the operator K has the following property

||ΞhK −KΞh|| ˜Hs0 (R)→ ˜Hs0 (R) ≤ const hs−2.

Proof. We start from the following representation

ΞhK −KΞh =

⎛
⎝χhK1 −K1χh 0

0 χhK2 −K2χh

⎞
⎠ .

The first difference is

((χhK1 −K1χh)f)(ξ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
−�π∫
−∞

+
+∞∫
�π

)
K1(ξ1, ξ2)f(ξ1)dξ1, ξ2 ∈ �T,

−
+�π∫
−�π

K1(ξ1, ξ2)f(ξ1)dξ1, ξ2 /∈ �T.

We estimate this difference, the second integral looks the same.∣∣∣∣∣∣

+∞∫

�π

K1(ξ)f(ξ1)dξ1

∣∣∣∣∣∣
≤

+∞∫

�π

|K1(ξ)||f(ξ1)dξ1 ≤ const

+∞∫

�π

(1 + |ξ|)−æ+1|f(ξ1)|dξ1

(we apply the Cauchy–Bunyakovskii inequality once again)

≤ const

⎛
⎝

+∞∫

�π

(1 + |ξ|)−2æ+2(1 + |ξ1|)−2s0dξ1

⎞
⎠

1/2 ⎛
⎝

+∞∫

�π

|f(ξ1)|2(1 + |ξ1|)2s0dξ1

⎞
⎠

1/2

≤ const

⎛
⎝

+∞∫

�π

(1 + |ξ|)−2(æ+s0−1)dξ1

⎞
⎠

1/2

||f ||s0 ,

We have
+∞∫

�π

(1 + |ξ|)−2(æ+s0−1)dξ1 ∼ (1 + |ξ2|+ �π)−2(æ+s0)+3,
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taking into account that −2(æ + s0 − 1) + 1 = −2(s− 3/2) + 1 = −2s+ 4 < 0. Thus, we can write
the inequality ∣∣∣∣∣∣

+∞∫

�π

K1(ξ)f(ξ1)dξ1

∣∣∣∣∣∣
≤ const||f ||s0(1 + |ξ2|+ �π)−(æ+s0)+3/2.

Squaring the latter inequality and multiplying by (1 + |ξ2|)2s0 after integrating over �T, we find

∫

�T

(1 + |ξ2|)2s0
∣∣∣∣∣∣

+∞∫

�π

K1(ξ)f(ξ1)dξ1

∣∣∣∣∣∣

2

dξ2

≤ const||f ||2s0
∫

�T

(1 + |ξ2|+ �π)−2(æ+s0)+3(1 + |ξ2|)2s0dξ2

≤ const||f ||2s0�
−2(s−2)

∫

�T

(1 + |ξ2|)2s0dξ2 ≤ const||f ||2s0h
2(s−2),

because 1 + |ξ2|+ �π ≥ 1 + �π,−2(æ + s0) + 3 = −2s+ 4 < 0; s0 < −1. Thus, we obtain

∫

�T

(1 + |ξ2|)2s0
∣∣∣∣∣∣

+∞∫

�π

K1(ξ)f(ξ1)dξ1

∣∣∣∣∣∣

2

dξ2 ≤ const||f ||2s0h
2(s−2).

The second case (|ξ2| > �π):
∣∣∣∣∣∣

+�π∫

−�π

K1(ξ1, ξ2)f(ξ1)dξ1

∣∣∣∣∣∣
≤ const

+�π∫

−�π

(1 + |ξ|)−æ+1|f(ξ1)|dξ1

≤ const

⎛
⎝

�π∫

−�π

(1 + |ξ|)−2æ+2(1 + |ξ1|)−2s0dξ1

⎞
⎠

1/2 ⎛
⎝

�π∫

−�π

|f(ξ1)|2(1 + |ξ1|)2s0dξ1

⎞
⎠

1/2

.

We have applied the Cauchy–Bunyakovskii inequality once again and with the inequality 1 + |ξ| ≥
1 + |ξ1| we have the estimate

�π∫

−�π

(1 + |ξ|)−2æ+2(1 + |ξ1|)−2s0dξ1 ≤ 2

�π∫

0

(1 + ξ1 + |ξ2|)−2(s0+æ)+2dξ1 ≤ const(1 + |ξ2|)−2s+4

≤ const(1 + �π)−2(s−2),

because −2(s0 + æ) + 2 = −2(s− 1/2) + 2 = −2s+ 3. Therefore, we have obtained the inequality
∣∣∣∣∣∣

+�π∫

−�π

K1(ξ1, ξ2)f(ξ1)dξ1

∣∣∣∣∣∣
≤ const||f ||s0hs−2.

Multiplying the latter inequality by (1 + |ξ2|)s0 , squaring and integrating over R \ �T, we find

∫

R\T

(1 + |ξ2|)2s0
∣∣∣∣∣∣

+∞∫

�π

K1(ξ)f(ξ1)dξ1

∣∣∣∣∣∣

2

dξ2 ≤ const||f ||2s0h
2(s−2)

+∞∫

�π

(1 + ξ2)
2s0dξ2.

The latter integral converges since s0 < −1. The same estimates are valid for the operator K2. �
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Corollary 1. If s > 2, æ > 2 and the operator K is invertible, then the operator K−1 admits the
same estimate

||ΞhK
−1 −K−1Ξh|| ˜Hs0 (R)→ ˜Hs0 (R)

≤ const hs−2.

Proof. Indeed, this property follows from inequalities

ΞhK
−1 −K−1Ξh = K−1KΞhK

−1 −K−1ΞhKK−1 = K−1(ΞhK −KΞh)K
−1,

so that

||ΞhK
−1 −K−1Ξh|| ˜Hs0 (R)→ ˜Hs0 (R) ≤ ||K−1|| · ||ΞhK −KΞh|| ˜Hs0 (R)→ ˜Hs0 (R) · ||K

−1||,

that is required. �

4.2. Special Discrete Symbols and Discrete Boundary Conditions

Since Theorems 2 and 3 give an equivalence for boundary value problems (4), (6) and (9), (11) to
systems of integral equations (7) and (10) respectively, then we will assume that continuous boundary
value problem (9), (11) is uniquely solvable for arbitrary boundary functions f, g ∈ Hs−3/2(R+). In other
words it means that there is the bounded inverse operator K−1 or the system of integral equations (10)
has unique solution for arbitrary right hand sides (F̃ , G̃)T .

To obtain a comparison between discrete and continuous solutions we need special choice of a
discrete operator and discrete boundary conditions.

The symbol Ad(ξ) of the discrete operator Ad will be constructed in the following way. If we have the
wave factorization for A(ξ)

A(ξ) = A�=(ξ)A=(ξ),

then we take restrictions of factors A�=(ξ), A=(ξ) on �T
2 and periodically continue them on R

2. We
denote these elements by Ad, �=(ξ), Ad,=(ξ) and construct the periodic symbol Ad(ξ) which admits
periodic wave factorization with respect to K

Ad(ξ) = Ad, �=(ξ)Ad,=(ξ)

with the same index æ. We construct the boundary functions fd Х gd in the same way. Thus, we have
the corresponding discrete boundary value problem (4), (6). The solution of the problem (9),(11) will be
compared with the discrete solution of such discrete boundary value problem.

Now we will introduce special discrete operators d
(1)
1 , d

(1)
2 instead of divided differences of first order

Δ
(1)
1 ,Δ

(1)
2 .

If we have a discrete function ud(x̃), x̃ ∈ hZ2, then we take its discrete Fourier transform ũd(ξ), ξ ∈
�T

2. Further, we define the following periodic function r̃(t) of one variable in the following way. If
t ∈ R we put r(t) = t and then we take its restriction on (−�π, �π) and periodically continue it into
a whole R. This periodic function will be denoted by r̃(t). Thus, we have the periodic function

r̃(ξk)ũd(ξ), k = 1, 2 with basic quadrat of periods �T
2. By definition, (d(1)k ud)(x̃), x̃ ∈ hZ2 is inverse

discrete Fourier transform of the function r̃(ξk)ũd(ξ), k = 1, 2. Taking into account this construction we
introduce the following boundary conditions instead of (6)

(d
(1)
1 ud)|x̃1=0

= fd(x̃2), (d
(1)
2 ud)|x̃2=0

= gd(x̃1). (12)

For this case we will obtain the following corrections for k1, k2, ã0, b̃0:
�π∫

−�π

ξ1A
−1
d, �=(ξ)dξ1 ≡ ã0(ξ2),

�π∫

−�π

ξ2A
−1
d, �=(ξ)dξ2 ≡ b̃0(ξ1).

k1(ξ) = ξ1A
−1
d, �=(ξ)ã

−1
0 (ξ2), k2(ξ) = ξ2A

−1
d, �=(ξ)b̃

−1
0 (ξ1),

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 44 No. 3 2023



1026 MASHINETS et al.

Everywhere below we take into account that this choice is done.
Lemma 3. For æ > 2 we have

|K1(ξ)− k1(ξ)| ≤ const (1 + |ξ|)−æ+1hæ−2 , ξ ∈ �T
2.

Proof. According to our choice of the symbol A−1
d, �=(ξ),

|K1(ξ)− k1(ξ)| = |ξ1A−1
�= (ξ)Ã−1

0 (ξ2)− ξ1A
−1
d, �=(ξ)ã

−1
0 (ξ2)| ≤ const(1 + |ξ|)−æ+1|Ã0(ξ2)− ã0(ξ2)|.

We estimate the |Ã0(ξ2)− ã0(ξ2)| as follows

|Ã0(ξ2)− ã0(ξ2)| =

∣∣∣∣∣∣

∞∫

−∞

ξ1A
−1
�= (ξ)dξ1 −

�π∫

−�π

ξ1A
−1
d, �=(ξ)dξ1

∣∣∣∣∣∣

≤ const

+∞∫

�π

(1 + |ξ|)−æ+1dξ2 ≤ const (1 + |ξ1|+ �)−æ+2 ≤ const hæ−2

for enough small h. By the way it gives the following inf |Ã0(ξ2)| �= 0 =⇒ inf |ã0(ξ2)| �= 0 for enough
small h. All estimates permit us to complete the proof. �

We introduce the operator ΞhKΞh. Lemma 2 implies that for enough small h an invertibility of the
operator ΞhKΞh in the space H̃s−æ−1/2(�T) follows from an invertibility of the operator K in the space
H̃s−æ−1/2(R) [14]. Moreover,

||(ΞhKΞh)
−1||

˜Hs0 (�T)→ ˜Hs0 (�T) ≤ const

for enough small h.
Lemma 4. If s > 2, æ > 2 then we have the following estimate for operators ΞhKΞh and k

||ΞhKΞh − k||
˜Hs0 (�T)→ ˜Hs0 (�T) ≤ const hæ−2.

Proof. We have the following identity

ΞhKΞh − k =

⎛
⎝χhK1χh − k1 0

0 χhK2χh − k2

⎞
⎠ .

We need to estimate the norm of the operators χhKjχh − kj , j = 1, 2. We will estimate only one term,
for example K1 using Lemma 3. Then we have

||χhK1χhf − k1f ||2s0 =
∫

�T

(1 + |ξ2|)2s0
∣∣∣∣∣∣

∫

�T

[K1(ξ)− k1(ξ)]f(ξ1)dξ1

∣∣∣∣∣∣

2

dξ2

≤
∫

�T

(1 + |ξ2|)2s0
⎛
⎝
∫

�T

|K1(ξ)− k1(ξ)||f(ξ1)|dξ1

⎞
⎠

2

dξ2

≤ const h2æ−4

∫

�T

(1 + |ξ2|)2s0
⎛
⎝
∫

�T

(1 + |ξ|)−æ+1|f(ξ1)|dξ1

⎞
⎠

2

dξ2.

In the inner integral, we introduce the factor (1 + |ξ1|)s0 and apply the Cauchy–Bunyakovskii inequality

∫

�T

(1 + |ξ|)−æ+1|f(ξ1)|dξ1 ≤ ||f ||s0

⎛
⎝
∫

�T

(1 + |ξ|)−2æ+2(1 + |ξ1|)−2s0dξ1

⎞
⎠

1/2
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≤ ||f ||s0

⎛
⎝

+∞∫

0

(1 + |ξ|)−2(æ+s0−1)dξ1

⎞
⎠

1/2

≤ ||f ||s0(1 + |ξ2|)−(æ+s0−1)+1/2 = ||f ||s0(1 + |ξ2|)−s+2,

because s0 = s− æ− 1/2, it gives

||χhK1χhf − k1f ||2s0 ≤ const h2æ−4||f ||2s0

�π∫

−�π

(1 + |ξ2|)2s0−2s+4dξ2

≤ const h2æ−4||f ||2s0

+∞∫

0

(1 + |ξ2|)−2æ+3dξ2 ≤ const h2æ−4||f ||2s0 ,

s0 + 1− s = −æ+ 1/2, taking a square root we obtain the assertion of Lemma 4. �

4.3. A Comparison

This section is devoted to a comparison between discrete and continuous solutions.
Theorem 4. If the conditions of Theorem 3 hold and s > 2, æ > 2 then a comparison for

solutions of problems (4), (12) and (9), (11) for enough small h is given by the estimate

||u− ud|| ˜Hs(�T2) ≤ const hs−2(||f ||s−3/2 + ||g||s−3/2),

where const does not depend on h.
Proof. We will compare solutions of systems (7) and (10). There are two solutions

ũ(ξ) = A−1
�= (ξ)(C̃0(ξ1) + D̃0(ξ2))

and

ũd(ξ) = A−1
d, �=(ξ)(c̃0(ξ1) + d̃0(ξ2)),

Keeping in mind ξ ∈ �π we denote by Φ̃d and Φ̃ vectors with coordinates (F̃d, G̃d)
T and (F̃ , G̃)T , C̃

and c̃ are vectors with coordinates (C̃0, D̃0)
T and (c̃0, d̃0)

T respectively. Then, we use vector notation

C̃ = K−1Φ̃, c̃ = k−1Φ̃d,

and for simplicity we denote by C1, C2 and c1, c2, jth coordinates of vectors C̃, c̃, j = 1, 2. Thus,

(χhũ)(ξ)− ũd(ξ) = χhA
−1
�= (ξ)

(
(C̃0(ξ1)− c̃0(ξ1)) + (D̃0(ξ2)− d̃0(ξ2)

)

= χhA
−1
�= (ξ)

(
(K−1Φ̃)1(ξ1)− (k−1Φ̃d)1(ξ1) + (K−1Φ̃)2(ξ2)− (k−1Φ̃d)2(ξ2)

)
;

we conclude that it is enough to estimate the norm ||ΞhK
−1Φ− k−1Φd||Hs0 (�T). Let us write

ΞhK
−1Φ− k−1Φd = (ΞhK

−1Φ−K−1ΞhΦ) + (K−1ΞhΦ− k−1Φd).

We use Corollary 1 to estimate the first summand,

||ΞhK
−1Φ−K−1ΞhΦ||s0 ≤ const hs−2||Φ||s0 .

The second summand is represented as follows

K−1ΞhΦ− k−1Φd = (K−1ΞhΦ− k−1ΞhΦ) + (k−1ΞhΦ− k−1Φd),

and we estimate each summand separately.
Let us consider k−1ΞhΦ− k−1Φd. In view of boundedness for the norm ||k−1|| by a constant non-

depending on h we have

||k−1ΞhΦ− k−1Φd||s0 ≤ const||ΞhΦ− Φd||s0 ≤ const(||χhF − Fd||s0 + ||χhG−Gd||s0)
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and it is left to estimate ||χhF − Fd||s0 and ||χhG−Gd||s0 . For F we obtain

||χhF − Fd||2s0 =

�π∫

−�π

|f̃(ξ2)A−1
0 (ξ2)− f̃d(ξ2)a

−1
0 (ξ2)|2(1 + |ξ2|)2s0dξ2

≤ const h2æ−4

�π∫

−�π

|f̃(ξ2)|2(1 + |ξ2|)2s0dξ2 ≤ const h2æ−4||f ||2s0

since fd and f are the same on �T and Lemma 3 can be used.
We apply the following operator identity to estimate the left summand

K−1 − k−1 = K−1(k −K)k−1

(let us remind that an invertibility of the operator k is stipulated by an invertibility of the operator K).
Thus, for �T

K−1ΞhΦ− k−1ΞhΦ = Ξh(K
−1 − k−1)ΞhΦ = ΞhK

−1(k −K)k−1ΞhΦ,

and, according to Lemma 4, we have

||K−1ΞhΦ− k−1ΞhΦ||s0 ≤ const hæ−2||Φ||s0 ≤ const hæ−2(||f ||s0 + ||g||s0).
All obtained estimates give the assertion of Theorem 4 if we take into account mapping properties of
pseudo-differential operators which permit to obtain the result with Hs-norm. �
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