Chapter 2 n
Digital Operators and Discrete Equations <
as Computational Tools

Alexander Vasilyev, Vladimir Vasilyev, and Anastasia Mashinets

2.1 Introduction

Discrete and difference equations play an important role in different branches of
science, particularly in mathematical biology, signal, and image processing [1, 2].
So, forexample, alot of physical and technical processes are described by difference
and discrete equations, namely, and continuous models arise as a limit transfer.
According to the latter sentence, it is thought that studying of difference and discrete
equations is very required.

We will deal with discrete equations related to well-known continuous math-
ematical objects as pseudo-differential operators and equations [3- 6]. There is a
series of books devoted to different aspects of the theory of discrete equations and
discrete boundary value problems (see, e.g., [7- 9]), but as a rule, these methods are
developed for partial differential equations only. Also, some authors use projectional
and algebraic methods for studying finite approximations for integral and related
operator equations [10- 12]. Let us remind that the theory of pseudo-differential
operators was constructed to join together the theory of differential operators and
certain integral ones. Starting from this point of view, we will try to construct
a theory of discrete pseudo-differential operators and equations, to study such
discrete equations and related discrete boundary value problems, and to verify their
approximation properties.

A few years ago, such a work was started, and certain results were obtained.
Some of these papers were related to discrete analogues of Calderon-Zygmund
operators and corresponding integral equations [13, 14], but latter papers are devoted
to studying discrete pseudo-differential equations and discrete boundary value
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problems in adiscrete space and a discrete half-space [15- 19]. We work with model
operators with symbols non-depending on a spatial variable in special canonical
domains which are cones in Euclidean space. This methodology is stipulated by a
special local principle in the theory of pseudo-differential equations. We will widely
use discrete and periodic analogues of classical one-dimensional singular integral
operators [20, 21], methods of function theory of many complex variables [22, 23],
and the key abstract result from the theory of projectional methods [24].

This paper is devoted to a new concept in the theory of discrete equations and
discrete boundary value problems. We will describe here this approach and will
present some key results in this direction. Most part of the paper will be related to a
plane quadrant, and it is a new type of a conical domain for which we try to expand
applicability of the suggested approach.

2.2 Discrete Spaces and Digital Operators

We will use the following notations. Let T be the segment [—n, n],h > 0, h = h—1L.
We will consider all functions defined in the cube T m as periodic functions in|Rm
with the same cube of periods.

IfludiX), x e hZm, is a function of a discrete variable, then we call it “discrete
function.” For such discrete functions, one can define the discrete Fourier transform

(FdudNe = udif) = J2 e~iXudiX)hm, £ e hTm
xehZm

if the latter series converges, and the function Ud(£) is a periodic function on Rm
with the basic cube of periodslhTm. This discrete Fourier transform preserves basic
properties of the integral Fourier transform, particularly the inverse discrete Fourier
transform is given by the formula

(F=1Ud)(x) = (2 ~ /| eiXtudi£)dE, xe hZm
hTm

The discrete Fourier transform is a one-to-one correspondence between the
spacesiL2(hZm) andL2(hTm) with norms

WudW\2 = ( X \udix)\2hm
\xehZm

and
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Example 1 Since the definition for Sobolev—Slobodetskii spaces includes partial
derivatives, we use their discrete analogue, i.e., divided difference of first order

(AN ud) @) = g @, o XA By Xm) — (L X X)),

for which its discrete Fourier transform looks as follows

A ua) (@) = h™ e — ity (&),
Further for the divided difference of second order, we have
(APua) G = h2wa (&1, oo 3 + 20, )
—2ug(x1, ..., xg+h, oo xm) Fug(X1, oo Xy e, X))

and its discrete Fourier transform

o —

APuE) = h 28— 1)%i,(8).
Thus, for the discrete Laplacian, we have
m
(Aqu)®) =¥ (AP ug) (@),
k=1
so that
T m .
(Aqua)(E) =72 (e — D% ().

k=1

We will use the discrete Fourier transform to introduce special discrete Sobolev—
Slobodetskii spaces which are very convenient for studying discrete pseudo-
differential operators and related equations.

Now we will introduce the basic space S(hZ™) which consists of discrete
functions with finite semi-norms

lug) = sup (1+ 2D [AWuy @)
xehzm

for arbitraryl e Ny k = (ky, ..., kp), kr e Nor =1, ..., m, where



38 A. Vasilyev et al.

A (iKudix) = n~1..., A kimudix).

In other words, the space \S(hZm) is a discrete analogue of the Schwartz space
S(Rm) of infinitely differentiable rapidly decreasing at infinity functions. Usually
the space of distributions over the basic spaceS(Rm) is denoted bylS'(Rm).

Digital distribution we call an arbitrary linear continuous functional defined on
S(hZm). A set of such digital distributions we will denote by S'(hZm), and a value
of the functional!f d on the basic functionlud will be denoted byl(fd, ud).

Together with the space |[S(hZm), we consider the space D (hZm) consisting of
discrete functions with a compact (finite) support. We say that fd = 0 in the
discrete domain\WMd = M NMhZm,M ¢ Rm, if (fd,ud) = 0,Vud e D(Md),
wherelD (Md) ¢ D (hZm) consists of discrete functions whose supports belong to
Md. If we will denote Md, a union of such Md, where ¥d = 0 then by definition
supp fd = hZm\ Md.

As usual [25], we can define some simplest operations in the space \S'(hZm)
excluding the differentiation (see below), and a convergence is defined as a weak
convergence in the space of functional*S'(hzZm).

Iffd(x)is alocal summable function, then one can define the digital distribution
fd by the formula

(fd,ud) = J2 fd(x)ud(X)hm, Vud e S(hZm).
xehZm

Such distributions we call regular digital distributions. But there are so-called
singular digital distributions like the Dirac mass-function

(Sd, ud) = ud(0),
which cannot be represented by the above formula.
m
Letus denote Z2=h 2 Y, (e th'sk — 1)2 and introduce the following
k=1

Definition 1 The spaceH s(hZm) is a closure of the spaceS(hZm) with respect to
the norm

/ \ U2

/

We would like to note that a lot of properties for such spaces were studied in
[26].
Further, letD ¢ Rmbe adomain andDd = D MhZm be adiscrete domain.

Definition 2 The space \H s(Dd) consists of discrete functions from \H s(hZm)
which supports belong to D . A norm in the space \H s(Dd) is induced by a norm
of the space Hs(hZm). The space H*(Dd) consists of discrete functions ud with
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a support in Dd, and these discrete functions should admit a continuation into the
whole Hs(hZm). A norm in the HS(Dd) is given by the formula

Wud\\+ = inf\\lud Us,

where infimum is taken over all continuations”.

The Fourier image of the spaceH s(Dd) will be denoted bylH s(Dd).

LeaAd(*) be ameasurable periodic function in|Rm with the basic cube of periods
hTm. Such functions are called symbols. As usual, we will define a digital pseudo-
differential operator by its symbol.

Definition 3 A digital pseudo-differential operator|Ad in a discrete domain Dd is
called an operator of the following kind

(Adud)(X) = J2 f -d(™)ei{X-y)*ud(i;Ne, Xe Dd.
yehZmhTm

An operator Ad is called an elliptic operator if

ess inf \Ad(*)\ > 0.
*ehTm

First as usual, we define the operatorAd on the dense seaS(hZm) and then extend
it on more general space.

Remark 1 One can introduce the symbolAd(X, *) depending on a spatial variable
X and define a general pseudo-differential operator by the formula

(Adud)(X) = £ f Ad (X,$)ei(X-y)ud(M)d$, Xe Dd,
yehZmhTm

For studying such operators and related equations one needs to use more fine and
complicated technique.

Definition 4 By definition the classlEa includes symbols satisfying the following
condition

Cl(1 + I1f2V)%/2 < \Ad(*)\ < c2(1 + \Z2\)a/2 (2.1)
with universal positive constantsic1, c2 non-depending on h and the symbollAd(*).

The numberla e R is called an order of a digital pseudo-differential operatorAd.

Obviously that operator!Ad satisfying (2.1) is an elliptic operator. Using the last
definition one can easily get the following property.

Lemma 1 A digital pseudo-differential operatoriAd e Ea is a linear bounded
operator Hs(hZzm) ~ Hs-a(hZm) which norm does not depend on h.
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We study the equation

(Adud)(x) = vd(x), x e Dd, (2.2)

assuming that we interested in a solution ud e Hs(Dd) taking into accountwvd e

HS—a(Dd).
Main difficulty for this problem is related to a geometry of the domain D.
Indeed, if D = Rm then the condition (2.1) guarantees the unique solvability

for the Eq. (2.2). We will consider here only so-called canonical domains and
simplest digital pseudo-differential operators with symbols non-depending on a
spatial variable [r. This fact is dictated by using in the future the local principle.
The last asserts that for a Fredholm solvability of the general Eq. (2.2) with symbol
Ad(x,£) in an arbitrary discrete domain YDd, one needs to obtain invertibility
conditions for so-called local representatives of the operator Ad, i.e., for an operator
with symbollAd(-, £) in a special canonical domain.

Earlier authors have extracted some canonical domains, namely, D = Rm,R*",
whereby = {x e Rm:x = (x', xm), xm > 0}.

Everywhere below we study the two-dimensional case for which a domain D is
the first quadrant in aplane,D = K = {x e R2 :x = (x\, x2), x\ > 0,x2 > 0}.
Moreover, we consider homogeneous equation (2.2)fora simplicity.

2.3 Solvability of Discrete Equations and Discrete Boundary
Value Problems

LeuKd = K MhzZ2.We study a solvability of the equation
(Adud)(x) = 0, x e Kd. (2.3)

We can describe solvability picture of the Eq. (2.3) if the symbollAd(£) admits a
special representation.

2.3.1 Periodic Wave Factorization

This concept is a periodic analogue of the wave factorization [23]. Some first
preliminary considerations and results were described in [15].

We will use certain special domain in two-dimensional complex space C2. A
domain of the typetTh(K) = hT2 + iK is called a tube domain over the quadrant
K, and we will consider analytical functions \f(x + it) in the domain \Th(K) =
ht 2+ iK.
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Definition 5 A periodic wave factorization for the elliptic symbolAd(£) e Ea is
called its representation in the form

Ad(H) = Ad,=(H)Ad,=(H),
where the factors Ad,=(£), Ad,=(£) admit analytical continuation into tube domains
Th(K), Th(—K) respectively with estimates

no $ no $
CL(L + \Z2])$ < \Ad,=(H + ir)\ < c[(L + \Z2])$,

no a—$ no a4$
c2(1 + 1Z2\)"2r < \Ad,=(H —iT)\ < c2(1 + \Z2\)*

and constants! ~ , cl, c2, ¢c® non-depending on h, where

Z2 = h2 ((e—ih(*1+irl) — 1)2 + (e—ih(h +ir2) — 1)~

£= (E1,£2) e hT2, T= (T1,T2) e K.

The number $ e R is called an index of periodic wave factorization.

2.3.2 Solvability Conditions

Using methods of [17, 23] one can obtain the following results on a solvability of
the Eq. (2.2).

Theorem 1 Len\$ —s\ < 1/2. Then the Eq. (2.3) has zero solution only.

Theorem 2 Leth —s = n + S,n e N, \S\ < 1/2. Then a general solution of the
Eq. (2.3) has thefollowingform

1
2ck(£1)zk + dk(h)Zkk Zj = h(e—£jh —1), j = 1,2,

0
*)
where ck(£1),dlk(€2),k = 0,1,...,n — 1, are arbitrary functions from
Hsk(hT),sk=s —$% + k — 1/2.
The apriori estimate

n—1
Wud\W\s < const ~ ~ ([ck]sk + [dkb 4
k=0

holds, wherA[-]sk denotes a norm iniH sk(hZ) and const does not depend on h.



42 A. Vasilyev et al.
2.3.3 Boundary Conditions

As we see, Theorem 2 asserts that for a certain case, we have a lot of solutions. To
obtain the unique solution, we need to determine uniquely all arbitrary functions in
the formula (*). We consider here the casek - s = 1+ 8, [8L < 1/2 for the Eq. (2.3)
and two different types of conditions.

2.3.4 Classical Variant: The Dirichlet Discrete Boundary
Condition

We consider here first simple case with discrete Dirichlet boundary conditions. It
follows from Theorem 2 that we have the following general solution of the Eq. (2.4)

Hd(f) = A—a=(f)(Co(fi) + do(b)), (2.4)

where c0,d0 e Hs—s —1/2(hZ) are arbitrary functions. To determine uniquely these
functions, we add the discrete Dirichlet conditions on angle sides

UdXI=0 = fd(x2), Udpe=0= gd(xi)m (2.5)

Thus, we have the discrete Dirichlet problem (2.3), (2.5).
First, we apply the discrete Fourier transform to discrete conditions (2.5) and
obtain the following form

hn hn
I #d(h,H2)dh = fd(b), f #dih,H2)dh = gd(fi)m

—hn —tin

Let us denote

hn hn
I A—=(%)d%i = bl&), f A—=£)db = bo(fi)
—hn —hn

and suppose that a0(f2), b0(fO = 0,Vfl = 0,f2 = 0.
Therefore, we have the following system of two linear integral equations with
respect to two unknown functions co”), d0(f2)

hn
f ki(f)Co(fi)dfi + dofe) = Fd(b)

—hn hn (2.6)

Co(fi)+ [/ k2(t)do(&)db = Gd(*i),
—hn
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where we have used the following notations
Fd(£2) = fd(£2)% 1(b), Gd(£1) = (£1),
h(£) = A-4=(£)a0;1(£2), bl £) = Ad}=(£)"+1(£1).
Unique solvability conditions for the system (2.6) will be equivalent to unique

solvability for the discrete Dirichlet problem (2.3), (2.5).
Thus, we obtain the following result.

Theorem 3 Le\fd, gd e Hs—1/2(R+), s > 1/2, and
infbl W >0, infYBO(EL)\ > O.

Then the discrete Dirichletproblem (2.3), (2.5) is reduced to the equivalent system
of linear integral equations (2.6).

2.3.5 Nonlocal Discrete Boundary Condition

Another variant of a boundary condition is the following

J2  ud(xl,x2)h = fd(x2), J2  ud(x1,x2)h = gd(x1),
xlehZ+ x2ehZ+ 27
J2  ud(x1,x2)h2 = 0.
xehZ++

These additional conditions will help us to determine uniquely the unknown
functionslcO, d0 in the solution (2.4).
Indeed, using the discrete Fourier transform, we rewrite the conditions (2.7) as
follows
ud(0, £2) = fd (£2), ud(£1,0) = gd(£1l), ud(0, 0) = 0. (2.8)

Now we substitute the formulas (2.8) into (2.4). The first two equality are

ud(0, £2) = A—=(0, £2)(t0(0) + dO(£2))

fd(£2),

ud(£1,0) = A—" 1, 0)(cO(E1) + d0(0)) = gd(£1).

It implies the following relations according to the third condition that\fd(0) =
gd(0), and it gives

c0(0) + d0(0) = 0, cO(0) = dO(0) = 0.
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So, we have at least formally the following formula
iwd(f) = A—=(f) (Ad,=(fi, 0)gd(fi) + Ad,=(0, f2)fd(b)) m (2.9)
Theorem 4 Leafd,gd e Hs+1/2(hZ). Then the discrete problem (2.3), (2.7) has
unique solution which is given by theformula (2.9).

The apriori estimate

lUd||s < COnst(llfd ||s+1/2 + ljgd ||s+1/2)

holds with a const non-depending on h.

2.4  Continuous Boundary Value Problems

Let A be a pseudo-differential operator with the symbol |[A (f),f = (fbf2)
satisfying the condition

ci(l + [f)* < |JA(f)|[<C2(l + O a.
and admitting the wave factorization with respect to the quadrant K
A(f) = A=(f)A=(f)

with index s such thath —s = 1+ 8, 18] < 1/2.
The continuous analogue of the discrete equation (2.3) is the following

(Au)(x) =0, x e Km (2.10)

2.4.1 The Dirichlet Condition
If we consider the Eq. (2.10), a general solution is written in the form [23]
W(f) = A=I(f)(CO(fl) + DO(f2))

where arbitrary functions CIO(fl), DO(f2) e Hs—s—1/2(R) can be determined from
the system of integral equations
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f B 4 )~~~ +D0G2)=Fb)
—0 0
OKbl + f K2(*")DO0O(bd2 = Gb),

if we use the following boundary conditions

«N=0 = f(x2), «b2=0= ¢ (x0

45

(2.11)

(2.12)

and assume that the conditions inf |[AO(b2)] = O,inf|BO(bl)] = O hold. Here we

have denoted
@ @

I A=I(H)dh = bl &), f A=I(H)dh = &0(h),
-0 -0

F(b)=fib)A—i(H), G (bl =gb)B -1("1),

BA) = A—(b)A—(b2), K2(b)

A-—l (b)B—I (b1)-

the following result is presented in the book [23].

Theorem 5 Ifs > 1/2, conditions

inf JAO("2)i= 0,inf|BO(bl)| = O

hold then the Dirichlet problem (2.10), (2.12) with data f, g e

Hs—1/2(R+)

is equivalent to the system of integral equations (2.11) with unknown functions

C0,D0e HSsO(R) and right hand sidewF, G e Hs0(R).

2.4.2 Integral Condition

We consider the Eq. (2.10) with the following additional conditions

+0 +0
ju (x1,x2)dx2 = ju (x)dx
0 0 —K

0.

(2.13)

A solution of the problem (2.10), (2.13) is sought in the space Hs(K) [23],
and boundary functions are taken from the space Hs+ 1Y 2(R+). Such problem was

considered in [27], and it has the solution
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h(f) = A=1(f) (A=(f1, 0)gf )+ A=(0, f2)f(f2)) (2.14)

under condition that the symbolA (f) admits the wave factorization with respect to
the quadrant K .

2.5 Error Estimates

To construct a discrete boundary value problem which is good approximation
for (2.10), (2.12), and (2.10), (2.13), we need to choose Ad(f) and jfd,gd in a
special way. First, we introduce the operatorllh which acts as follows. For a function
u defined in R, we take its Fourier transform U then we take its restriction on hT
and periodically extend it tolR. Finally, we take its inverse discrete Fourier transform
and obtain the function of discrete variable(lhu)(X), X e hZ. Thus, we put

fd=Ihf, gd=Ilhgm
Second, the symbol of digital operator Ad we construct in the same way. If we

have the wave factorization for the symbollA (f), then we take restrictions of factors
onlhT2, and the periodic symbollAd(f) is a product of these restrictions.

2.5.1 The Discrete Dirichlet Problem

We introduce the space|Hs(R) of vector-functionslf = (f1,f2),fj e Hs(R), j
1, 2,

= |IfLlls + [If2]Is

and matrix operators

K=1KL 1V k= ikllh
I K2y \1hk2

acting in spaces Hs—s —1/2(R) and Hs—s —4/2(hT), respectively.
Letus remind thatsO= s —s —1/2.

Lemma2 UndeAs > 1,s > 1 the operator K is bounded in the space|Hs*(R),
K :HsO(R) » HsOR)m

Proof Itis enough to estimateK 1f .
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+oo
K1 f115, = /(1 + 18D (K1 f)(E)Pdér =

400 400 2
= /(1+|§2|)2s° /Kl(fl,fz)f(fl)dfl d&; <

2

+00 +0o0
=< /(1+|§z|)2““° /|K1(§1,Sz)||f(§1)|d§1 & <

2

+o0 o0
< const /(1+|§2|)2s° /<1+|sl|+|sz|>—$||f<sl>|dsl dés

In the inner integral, we apply the Cauchy—Schwartz inequality using the factors
(1 + |&1])7% and (1 + |&;|)* for first and second term, respectively, and take into
account that (1 + |&1])7% < (1 + |&1| + |&2])7%. Thus,

+00 +00

KL I < cons|| fI1Z) f<1+|sz|>2~“° /(1+|§1|+|§2|)_2(S°+$>d51 d&) <
-0 o0
G0 400
2 250 —25+1
< const|IfI2, /<1+|sz|> /(1+|§1|+|§2|) de, | e, <
0 0
G0

S Cons||f||%0 /(1+|§2|)250—25+2d52§ ConStHfH%O
0

+oo
x / (U + 16D "2 dg, < const] £,
0

in view of the conditions s > 1, & > 1. m|

Let us denote by x;, : H*(R) — H®(AT) the restriction operator on the segment
AT. The restriction operator on the segment T in the space H* (R) will be denoted
by &}, so that for f = (f1, f2) € H*(R) we have
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Enf =Gt xnf2).

We remind that 7 is small enough, 0 < i < 1.
Lemma 3 Under s > 1, & > 1 the operator K has the following property
1En K — K Enllfporymfivor) < const h°~L.

Proof One can easily verify the following

EhK—KEh:<XhK1_K1Xh 0 )
0 xn Ko — Koxn

We conclude that

—hm

+o0
( ) ) Ki(&1, &) f(E1)dE, & € KT
(K1 — K g = V™ Ir

+hr

— [ Ki(E1, &) f(EdE, & ¢ IT.

—hm

Let us start from the first case and estimate one of integrals.

+00 +0o0 +oo
/Kl@f(sl)dsl - / K1 ()1 f EDIdEr < const /<1+|s|>—$|f<sl>|dsleq
hm hr hm

(we use Cauchy—Schwartz inequality)

172
+oo
< const / (Ut [ED25 (L + &1 )~>0dE,
hm
+00 172
x /|f<sl>|2<1+|sl|>2s°dsl <
hm
“+o0 172
< const / (44172008 | 11711,
hm

Further,
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+00

/ (1 + [E)T2ET0gey ~ (14 || + i) ~2@Fs0I+L
hm

since —2(x& +s0) +1=-2(s—1/2)+1=-2s+2 < 0.
Thus, the following inequality is obtained

400
/K1(§)f(§1)d51 < const||fls(1 + |&2| + hor)~@+s0+1/2,
hm

Squaring the latter inequality, multiplying by (1 + |£,)%° and integrating over AT
we obtain

2

+0o0
/(1+|§2|)2SO /Kl(é)f(&)dél déy <
hm

AT

< const||fII3, f (1 + |&o| + hr) T2EFOTL(] 4 |5 )20dE, <
AT

< const|| fI3,(1 + him)~2+2 / (1 + &) ™0 ds,
1T

2s0 < —1. S0, we have

since 1 + |&| + Ahr > 1 + |Ax|, —2(x + s0) + 1 = —25 + 2 < 0. Let us note

2

+00
/(1 + 16> / Ky fEDdé| déy < const|| fIIZ h*¢Y.
AT B

For the second case (|&| > hm)

+hr +hr

/ K11, £2) f(EDdé| < const / (14 6D~ f Elde <

hm —hm
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1/2

hm
< const / (L4 EDT22(1 4 |&])~>0dg,

—hm

1/2

hm
x / |FEDPA + &1 )>0dE

— A

Here we have used the Cauchy—Schwartz inequality once again. Taking into account
the inequality 1 4 |&| > 1 4 |&;| we obtain the estimate

R hm
/ (14 D221+ [&11)>0dE, < const / (1 + & + | 20+, <
0

—hm

< const(1 + |&)) ™12 < const (1 + hr)~2512,

in view of —2(sp + &) = —2(s — 1/2) = =25 + 1.
Therefore, we obtain the inequality

+hr

/Kl(él,éz)f(&)d& < const|| f|ls,h’ .
hm

Multiplying by (1 + |&])% the latter inequality, squaring and integrating over
R\ AT we find

2
+00

+00
/ (1+]&)% / Ki(&)f Eder| iy < const||£I2h20D / (1+&)*0d,.
hmr

R\T W

The latter integral converges since 2so < —1.
The same estimates are valid for K». m|

Corollary 1 Ifs > 1, ® > 1 and the operator K is invertible then for the operator
K~ the same estimate holds

fond -1 —1 = -1
|2, K~ — K ah||ﬁSO(R>_>ﬁso(R) < const h*~".
Proof Indeed, we have

E K '—K '8, =K 'KE)K ' —K ', KK ' = K Y EL,K —KE)K ™,
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and therefore

[[ERK i—K irh|HO(R)"Ho®) < I[K i|lI'|[fI6K —K ~ hillHso(R)*Hso(R)'1|K

Lemma 4 Fornk > i thefollowing estimate

\Ki(b) —ki(f)|]< const (i + Ib])—*h*—\ b e hT2.

holds.

Proof Indeed, according to our choice for A—i=(f)

\Ki(b) —ki(f)| = |A=i(b)*—i(b2) —A —=(b)'a—I (b2)\

< const(i + |b|)—$\Ao(b2) —ao(b2)\.
Let us considerl|Ao(f2) —ao(f2)|. Then

to hn
la 0(b2) —ao(b2)l = | A—(b)dbi — f A—égb)dbi <
—hn
+to

< const j (i + |f|])—=dfi < const (i + H21+ h)>k+1 < const h1—i

hn
for enough small h. It implies the following implication inf|Ao(f2)] = o ="-
inflao(f2)l = o for enough small h.
Collecting the obtained estimates we complete the proof. 0O

Let us introduce the operator'EhK Eh.Lemma 3 implies that for enough small h
an invertibility of the operator EhK E h in the space Hs—x—i/2(hT) follows from an
invertibility of the operator K in the space Hs—k—i/2(R) [24]. Moreover,

W(EhKEh) HHo(hT)*Hso(hT) < const
for enough small h.

Lemma5 f »x > i then a comparisonfor norms of operatorslEhK Eh and k is
given by the estimate

WE hK E h —k||Hso(hT)*Hso(hT) < const h
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Proof The difference of the operators looks as follows

{ XhK1Xh —k1 0
MK Ah —k =
\% 0 XhK2Xh — k2
and we need to estimate the normxhKjXh —kj,j = 1, 2. Letus estimateK1using

Lemma 3. So, we obtain

iiXhKxXhf —h fii2 = f((l + B2)2s0 f K1i(b) —ki(b)If(bl)dbl db2 —
hT hT

—f (L+ b2)20 1 1KL(b) —h(b)iif(b)idbl  db2 —
hT \hT

\2

— const K2k 2J(fl + B2N20 f (1 + bh—okf b )ldb  db2.
hT \h T /

In the inner integral, we apply the Cauchy-Schwartz inequality with the factor
(1 + bll)0

/ \ 1/2
(1 + bl)—>Kf(bl) dbl — I (1 + bh—2x(l + Ibll)—2s0dbl <
hT \h T
+0 \ U2
i (I + Ibl)—2(x+s0)dbl I — | If UD(L + b21)—Or ~+ 1/2
0
uo(l + Ib21)—s+1,
sincelsO = s —x —1/2. We have
hn

IXhKIXhf —h f 120 — const h2x—=21f 11 j (1 + [b21)2s0-2s+2db2
-hn
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+1to
< const h2x—=211f\20 J (i + 1f2l)—=21+idf2 < const h2x—=2\\f 112,

0

in view ofko+ i —s = —x + /2. Taking a square root, we obtain the required
assertion. O

At this time, we are able to compare discrete and continuous solutions.

Theorem 6 Let the conditions of Theorem 5 hold andLs > i, % > i. A comparison
for solutions ofproblems (2.10), (2.12) (2.3), (2.5)for enough small h is given by
the estimate

W —ud\W\Hs(hT2) < const hs—i(I1f W—i/2 + 1]* [|s—i/2)

where const does not depend on h.

Proof We start from a comparison of solutions of systems (2.6) and (2 .ii).
We have the continuous solution

u(b) = A=I(b)(Co(fi) + Do(b2))
and the discrete one
ud(b) = A—(f)(co(fi) + dote)).
Taking into account thatlf e hn, we obtain the conclusions below.
Let us denote by &d and & vectors with components (Fd, Gd)T and (F,G)T,
Cl and c are vectors with components- (Clo, Do)T (co, do)T, respectively. Then we
write

C =k o, c=k—o

wherelCbh C2andci,c2,j-th coordinates of vectorsiC,c, j = i, 2. Therefore,

(Xhu)(b) —ud(b) = XhA— (b)((.Co(bi) —co(fi)) + (Dofe) —do(b)) =

= XhA=i(f) ((K—®)i(bi) — (k=i d)i(fi) + (K —19)2(b2) — (k—i" d)2(f2" .

It implies that it is enough to estimate the norm ||[EhK —4® —k— &d|H»o(T). We
write

EhK—dd —k—® = (EhK—® —K —Eh®) + (K—Eh® —k—i ®A).

We use Corollary i for an estimate of first summand. We obtain
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INEhK —1® — K —Eh® 110 — const hs—111® 1isO
and then the second summand, we represent as the sum
K —-1Eh® —k—1®dn = (K—Eh® —k~IEh") + (k—lEh® —k—1da),

each summand we will estimate separately.
Let us consider k—lEh® —k—1®a. Since norm of the operator k- 1 is bounded
by a constant non-depending on h, we obtain

Ik—lEh® —k—d 1s0 — constllEh® — &d 1IsO
— const(lIXhF —Fd 10+ 1IXhG — Gd 110).
Last step is to estimate, for example!11xhF — Fd||sO. We have

hn

IXhF —Fd120= J If'(b2)A01(b2) —fd(b2)as1(b2) 2(1 + 1b21)2s0db2 —
—hn

hin
— const h2*-2 j If(b2)i2(1 + Ib2i)2s0db2 — const h2x—=2iif i20
—hn

according to coincidence forifd and f onlhT and the estimate of Lemma 4.
Left summands can be estimated by the following operator identity

K——k—1= K—1(k —K)k—L.

(Letus remind that an invertibility of the operator k follows from an invertibility of
the operator K .) Therefore, comparing overhT

K —Eh® —k—lEh® = Eh(K— —k—1)Eh® = EhK—(k —K)k—lEho®,
and taking into account Lemma 5, we have the estimate
IHK—lEh® —k—1lEh® iisc — const k>x1LU®"*0 — const h~H iif~ + llgiisc).

Summing obtained estimates, we complete the proof, taking into account mapping
properties of operators which admit to obtainH s-norm. 0O
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2.5.2 Nonlocal Discrete Boundary Value Problem

For suchfd, gd and the symbolAd(£), we obtain the following result.

Theorem 7 Lemf, g e S(R), x > 1 Then we have the following estimate for
solutions u andrnud of the continuous problem (2.10), (2.13) and the discrete
one (2.3), (2.7)

[u(x) - ud(x)] < C(f, g)he,

where the const\C (f, g) depends on functions*f, g,|B > 0 can be an arbitrary
number.

Proof First, let us note that solvability conditions for the problem (2.10), (2.13)
guarantee satisfying solvability conditions of the problem (2.3), (2.7) for enough
small h.

Further, we need to compare two functions (2.9) and (2.14), more exactly their
inverse discrete Fourier transform and inverse Fourier transform at pointsix e Kd.
We have

\hT2 R2 /

an j BAA-1(b) (A=(b, 0)g(El) + A=(0, & )f(&)) dE,
R2\h T2

since according to our choice for\Ad, fd, gd the functions ud and u coincide in
pointsb e hiT 2.
We will estimate one summand.

1
i eijilbA=1(E£)A=(£1, 0)g(h)d£
4n2

R2\h T2

sincelg e S(R). It implies the required estimate. O
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2.6 Conclusion

We have considered very simple variants of discrete boundary value problems for
digital operators. Particularly, our considerations are based on Theorem 2 which
gives a general solution of our discrete equation. There are a lot of different
situations in this studying, for example, the case lh > i which permits to use
more complicated boundary conditions, or the casan e N,n < o which admits to
introduce more unknowns in Eq. (2.2) and potential like discrete operators similar
considered ones in [i8]. We work in this direction and present these studies in
forthcoming publications.
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