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Abstract—The potential well formed by the repulsive continuous potentials of three neighboring [111] chains
in a silicon crystal, for a positively charged particle, exhibits the symmetry of an equilateral triangle, described
by the  group. In this case, the previously developed procedure for finding the eigenvalues of the transverse
motion energy of channeled positively charged particles (positrons or protons) and the corresponding eigen-
functions of the Hamiltonian, implemented on a square spatial grid, leads to artifacts in numerical modeling.
We present a modification of the modeling algorithm based on a hexagonal grid, which takes into account the
symmetry of the problem. The results of both approaches are compared, demonstrating the absence of arti-
facts when using a hexagonal grid. Using numerical methods, all discrete energy levels of the transverse
motion of channeled positrons with a longitudinal motion energy of 2, 2.5, 3, 3.5, and 4 GeV in the discussed
potential well are found. The developed procedure can be used in studies of manifestations of dynamic tun-
neling and quantum chaos in channeling.
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INTRODUCTION
A fast charged particle moving near one of the

densely packed crystallographic axes in a crystal can
be trapped in the potential well formed by these axes,
undergoing finite motion in the plane perpendicular
to the corresponding axis and anomalously penetrat-
ing deep into the crystal. This phenomenon is known
as axial channeling [1–4]. Particle motion in the axial-
channeling mode can be accurately described as
motion in the field of a continuous potential of the
atomic chain, i.e., a potential averaged along the chain
axis [5]. For such a potential, the longitudinal compo-
nent of the particle momentum p|| is conserved, which
reduces the problem of particle motion to a two-dimen-
sional problem of motion in the transverse plane.

When fast particles channel in crystals, quantum
effects can manifest itself [1]. In a series of previous
works [6–14], a numerical method was developed to
find the energy levels of two-dimensional transverse
motion and the corresponding wave functions of
steady states of electrons and positrons channeled in
the [110] and [100] directions of a silicon crystal. In
this work, a quantum description of the transverse
motion of positrons in the [111] direction of a silicon
crystal is provided, which required some modification
of the numerical method for the potential well formed
by the continuous potentials of three neighboring
chains in the [111] direction of the crystal. Nonphysi-

cal artifacts arising from numerical integration of the
Schrödinger equation with such a potential on a
square discrete grid are discussed. It is shown that the
use of a hexagonal grid, taking into account the sym-
metry of the potential, leads to the elimination of these
drawbacks.

EXPERIMENTAL

The motion of a relativistic particle in a crystal at a
small angle to a densely packed crystallographic axis
can be described as two-dimensional motion in the
transverse plane (with respect to this axis) under the
action of continuous potentials averaged along atomic
chains perpendicular to this plane while preserving the
longitudinal component of particle momentum p| |. In
the (111) plane of a silicon crystal, such chains form a
hexagonal lattice with a side of the primitive cell a =
az/√6 ≈ 2.217 Å, where az is the period of the silicon
lattice. For a positively charged particle (hereafter, for
specificity, we refer to a positron), the continuous
potential of the chain is repulsive. However, near the
center of the triangle, at the vertices of which the three
closest chains are located, a small potential well arises
(Fig. 1). In this well, there is the possibility of finite
motion of the positron in the transverse plane, known
as axial channeling. The potential energy of the posi-
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Fig. 1. Potential energy (1) of a positron moving along the
[111] direction of a silicon crystal.
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tron, taking into account the contributions from these
three chains, can be described by the following sum:

(1)

where the constant is selected to make the potential
zero at the center of the triangle. The continuous
potential of an individual atomic chain is approxi-
mated by the equation [1]

(2)

where, for the [111] chain of silicon, U0 = 58.8 eV, α =
0.37, β = 2.0, and R = 0.194 Å (Thomas–Fermi radius).
The quantum dynamics of the transverse motion of a
positron in the axial channeling mode is described by the
two-dimensional Schrödinger equation

(3)

with the Hamiltonian

(4)

where the quantity E||/c2 plays the role of the particle

mass, and  represents the energy
of longitudinal motion [1].

The integration of Eq. (3) with potential (1) is pos-
sible numerically only. The basis of our approach is the
so-called spectral method for finding eigenvalues and
eigenvectors of the Hamiltonian [15], the details of
which, applied to the channeling problem, are
described in [6–10]. This method relies on computing
the correlation function between wave functions of the
system at the initial and current moments in time
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the Fourier transform of which contains information
about the eigenvalues of the Hamiltonian. Thus, the pro-
cedure is based on numerical simulation of the time evo-
lution of the wave function according to Eq. (3):

(6)

Derivation based on Eq. (6) is complicated by the fact
that the Hamiltonian (4) consists of two noncommut-
ing terms. The first term (corresponding to the kinetic
energy) is diagonal in the momentum representation,
while the second term (corresponding to the potential
energy) is diagonal in the coordinate representation.
In this case, the operator-splitting method is used,
based on the Zassenhaus product formula [15–17]:

To apply the “kinetic” evolution operator, the
function on which it acts must be represented as an
expansion in the eigenfunctions of such an operator,
i.e., in a Fourier series. In the numerical procedure
developed earlier [6–14], the wave function was
defined in a square spatial domain on a square discrete
grid, and the Fourier expansion was performed trivi-
ally. However, such an approach does not correspond
to the symmetry of the problem considered here and
leads to artifacts in numerical simulation. The prob-
lem can be addressed by selecting a hexagonal grid and
defining the wave function and potential in the region
as a regular hexagon (Fig. 2), the center of which coin-
cides with the center of the triangular well formed by
potential (1).

To represent the function as a Fourier series in this
case, we use the well-known concept of the reciprocal
lattice in solid-state physics (for example, [18, 19]):

(7)

where the basis vectors of the reciprocal lattice g1 and g2
are constructed based on the direct lattice a1, a2, and
a3, and in the case of a two-dimensional lattice, vector
a3 is selected as the unit vector perpendicular to the
plane containing a1 and a2:

(8)

Representing a function as a Fourier series can be per-
formed either for a periodic function or for a function
defined in a bounded region of space. In the case
under consideration, this region, in the form of a reg-
ular hexagon, plays the role of the Wigner–Seitz cell in
real space, and the vectors a1 and a2 serve as its trans-
lation vectors.
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Fig. 2. Schematic representation of a hexagonal grid for
numerical simulation in configuration space (the value
N = 13 was selected to plot the figure).
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Fig. 3. Schematic representation of a hexagonal grid for
numerical simulation in reciprocal space for N = 13.
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Assigning a function on a discrete grid within such
a cell, according the Nyquist–Kotelnikov–Shannon
theorem, leads to a limitation of the function’s spec-
trum in reciprocal space, i.e., to a limitation of the
summation in Eq. (7) within the limits of

(9)

where N = |a1,2|/Δx is the number of rows in the hexag-
onal grid in coordinate space, which aligns along the
vector a1 or a2. It is convenient to choose this number
as odd, and the grid itself in such a way that its central
node coincides with the center of the triangular poten-
tial well (1). The reciprocal lattice vectors in Eq. (7)
define a hexagonal grid in reciprocal space, and con-
dition (9) limits the Bravais lattice in the form of a
rhombus (circles in Fig. 3). Parallel translations of
individual nodes of this grid by vectors ±Ng1,2 do not
violate the validity of expansion (7) and enable con-
structing, instead of the Bravais lattice, the Wigner–
Seitz cell in the form of a regular hexagon (dots in Fig. 3),
which best corresponds to the conditions of the prob-
lem. In the calculations, we used a hexagonal grid in
coordinate space with N = 115 and a step of Δx ≈
0.0075 Å. For comparison, simulation was also per-
formed for a square grid with N = 128 and a step of
Δx ≈ 0.0077 Å, and the corresponding spatial region is
marked with a dashed line in Fig. 2.

Fourier transformation of the correlation function (5)
reveals the energy only of those steady states that leave

( )− − ≤ ≤ −1,21 1,N m N
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the initial wave packet Ψ(x, y, 0) in superposition. If
we select an asymmetric Gaussian

(10)

it contains all steady states in the well. However, to
investigate the spectrum of the Hamiltonian (4), its
eigenstates need to be classified according to the sym-
metry properties of potential (1).

Since potential (1) has the symmetry of an equilat-
eral triangle, all available states of transverse motion
can be classified into irreducible representations of the
group  (or an isomorphic group D3 (for example,
[20])), depending on the symmetry type of the wave
function. The group elements include the identity
transformation I, rotations at angles 2π/3 and 4π/3,
denoted by R and R2, reflection in the “vertical” plane P,
and the combinations PR and PR2. This group has two
one-dimensional irreducible representations, denoted
as A1 and A2, which correspond to nondegenerate
energy levels, and one two-dimensional representa-
tion, denoted as E, corresponding to doubly degener-
ate levels. The basis function of the irreducible repre-
sentation A1 remains unchanged for all transforma-
tions. It is easy to construct the initial wave packet
satisfying this requirement based on the results of the
action on (10) of all group operators, summed with
equal weights:

(11)
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forms the basis of the representation A2. The basis of the
two-dimensional irreducible representation E consists of
linear combinations with complex coefficients,

(13)
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Fig. 4. Graphs of the initial functions included in the numerical s
(c) ER, Eq. (15); (d) EI, Eq. (15).
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These functions transform into each other upon
reflections and acquire a phase factor upon rotations.
However, with further consideration of the intended
use of the developing procedure in the search for
quasi-classically interpretable wave functions (similar
to what was done in [14] for positron channeling in the

( ) ( )ψ = ψ *
2 1 .E E
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imulation, related to symmetry (a) A1, Eq. (11); (b) A2, Eq. (12);
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Table 1. Energy levels of transverse motion (eV) in the potential well (1), found numerically with discrete specification
of functions on square and hexagonal grids

Nonphysical artifacts are indicated in parentheses. Underlined values are the nonphysical splitting of degenerate levels.

Square grid Hexagonal grid

A1 ER EI A1 ER EI

E| | = 2 GeV

0.13020 0.13022
(0.25466) 0.25467 0.25467 0.25507 0.25507

E| | = 2.5 GeV

0.11648 0.11649
(0.22822) 0.22846 0.22845 0.22858 0.22858
0.32355 (0.32355) 0.32594

E| | = 3 GeV

0.10635 0.10636
(0.20865) 0.20900 0.20899 0.20904 0.20904
0.29783 (0.29792) 0.29879

(0.31292) 0.31297 0.31295 0.31360 0.31360

E| | = 3.5 GeV

0.09848 0.09848
0.19381 0.19380 0.19382 0.19382

0.27743 (0.27768) 0.27783
(0.29021) 0.29045 0.29043 0.29071 0.29071

E| | = 4 GeV

0.09213 0.09213
0.18152 0.18152 0.18153 0.18153

0.26075 0.26093
(0.27199) 0.27218 0.27217 0.27229 0.27229
[100] direction), it is convenient to take the real and
imaginary parts (13) as the initial functions,

(15)

since a complete set of eigenfunctions of a real Hamilto-
nian can always be selected to be real (for example, [21]).
Substituting the initial functions in the form of (11), (12),
or one of (15) into (5) and performing the numerical
procedure result in finding the eigenvalues of the
energy of bound states in the potential well (1), corre-
sponding to the eigenfunctions of the Hamiltonian
with symmetry of the respective type. Plots of the ini-
tial functions with the symmetry of all four types (11),
(12), and (15) are presented in Fig. 4.

RESULTS AND DISCUSSION

As mentioned earlier, parameter E| |/c2 in Hamilto-
nian (4) plays the role of the particle mass, so with an
increase in the energy of longitudinal motion, the total

( ) ( ) ( ) ( )ψ = ψ ψ = ψ1 1Re , m ,IR IE E E E
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number of energy levels in the potential well increases.
This can be easily understood by considering quasi-
classical arguments (for example, [1]); new levels
“squeeze” into the potential well from the continuum
of states lying above it, representing infinite particle
motion. Table 1 presents the results of the numerical
determination of transverse-motion energy levels for var-
ious values of E||. It turns out that these values of longitu-
dinal-motion energy are not enough to have at least one
bound state in the well with symmetry of type A2.

The data in Table 1 suggest that simulation using a
square grid, in addition to revealing true eigenvalues of
positron energy in the well (1), generates artifacts of
two kinds. First, the algorithm that uses initial func-
tions related to one of the two types of symmetry: A1 or
ER ((11) and (15)), returns some false levels in the
results of the simulation, coinciding with the true lev-
els related to the second type (which can be verified by
constructing the corresponding eigenfunction of the
Hamiltonian for that energy value). All such false
eigenvalues are marked in the table in parentheses.
TRON AND NEUTRON TECHNIQUES  Vol. 18  No. 2  2024



SIMULATING QUANTUM STATES OF POSITIVELY CHARGED PARTICLES 279
Their appearance is because the function specified for
a square grid does not have undisturbed symmetry of
A1 or ER and represents a superposition of functions of
both types.

Another type of artifact is the observed nonphysi-
cal splitting near the upper edge of the well of the dou-
bly degenerate E-type level. It is related to the fact that
the specified potential in the square region does not
actually have  symmetry, and this symmetry is vio-
lated beyond the triangular well for the highest-lying
states. In Table 1, all such split eigenvalues are under-
lined. This is also the reason for the increase from the
bottom to the top of the well in the difference in the
absolute values of the energy levels found on square
and hexagonal grids.

Simulation using a hexagonal grid avoids both of
the described drawbacks.

CONCLUSIONS
The paper examines the channeling of positrons

with energies ranging from 2 to 4 GeV along the [111]
direction of a silicon crystal. The quantum energy lev-
els of the transverse motion of positrons in this case
can only be numerically determined, implying the
specification of the particle potential energy and its
wave function on a discrete spatial grid. The specificity
of the problem under consideration lies in the fact that
three neighboring atomic chains [111] create a poten-
tial well with the symmetry of an equilateral triangle.
Under these conditions, the use of a square grid leads
to the appearance of nonphysical artifacts alongside
the true energy levels in the simulation results. The
developed modification of the spectral method for
finding eigenvalues of transverse-motion energy, using
a hexagonal grid, eliminates these drawbacks.

Interest in the quantum description of motion in a
potential well with the symmetry of an equilateral trian-
gle is associated with the fact that the phenomenon of
dynamic tunneling was investigated precisely in such a
well in the pioneering work [22]. Dynamic tunneling
during channeling in a well of another configuration
(with the symmetry  of a square) was studied in [14].

It is also worth noting that the quantum description
of particle motion in planar and axial channels rep-
resents an interesting problem, illustrating the mani-
festation of quantum mechanics beyond standard aca-
demic pursuits and possessing significant pedagogical
potential, as emphasized in [23, 24].
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