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We construct Vekua-Erdelyi-Lowndes type transmutation operators that transform solu-

tions to the Cauchy problem for unperturbed equations into to the Cauchy problem for

perturbed ones. Bibliography: 4 titles.

1 Introduction

In this paper, we develop the so-called transmutation method (see historical survey in [1]). Let

two operators (A,B) be given. A nonzero operator T is called the transmutation operator if

T A = B T. (1.1)

An important step of the transmutation method is to choose an appropriate function space

where the equality (1.1) is valid.
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We are interested in a special class of transmutation operators that intertwines the operators

A + λ1 and A + λ2, where A : S1 → S2 is some operator, λ1, λ2 ∈ C, and S1, S2 is a pair of

function spaces. Since such operators appeared in the works of Erdélyi, Vekua, and Lowndes,

it is natural that they will be referred to as Vekua–Erdélyi–Lowndes operators. We note that

such operators were considered in [2] (see also the references therein).

Based on Vekua–Erdélyi–Lowndes transmutation operators, we clarify connections between

the solutions to the Cauchy problems for the equations wtt = Aw and wtt ± c2w = Aw, where

w = w(x, t), c ∈ R, and A is a linear operator acting by x ∈ R
n. The class of equations with

such operators includes, in particular, the telegraph equation and the Helmholtz equation.

2 Transmutations in the Form of Volterra Operators
of the Second Kind

In this section, we construct transmutation operators S±
c with intertwining property

S±
c D

2=
(
D2±c2

)
S±
c .

Theorem 2.1. Let f ∈ C2. A transmutation operator satisfying the identity

S±
c D

2f =
(
D2 ± c2

)
S±
c f, (2.1)

where D = d/dt has the form of the Volterra operator of the second kind

(S±
c f)(t) = f(t) +

t∫

−t

K±(t, τ)f(τ) dτ, (2.2)

with the kernel

K±(t, τ) =
c
√
t+ τ

2
√
t− τ

⎧
⎨

⎩

−J1

(
c
√
t2 − τ2

)
,

I1

(
c
√
t2 − τ2

)
.

Proof. We are looking for a transmutation operator satisfying the identity (2.1) in the

form of Volterra operator of the second kind (2.2) Here, the kernel K±(t, τ) is smooth in both

variables. Substitution into the formula (2.1) leads to the relation

t∫

−t

K±(t, τ)f ′′(τ) dt =
d2

dt2

t∫

−t

K±(t, τ)f(τ) dτ ± c2

⎛

⎝f(t) +

t∫

−t

K±(t, τ)f(τ) dτ

⎞

⎠ .

Since

t∫

−t

K±(t, τ)f ′′(τ) dτ = K±(t, t)f ′(t)−K±(t,−t)f ′(−t)−K±
τ (t, τ) |τ=t f(t)

+K±
τ (t, τ) |τ=−t f(−t) +

t∫

−t

K±
ττ (t, τ)f(τ) dτ
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and

d2

dt2

t∫

−t

K±(t, τ)f(τ) dτ =

t∫

−t

K±
tt (t, τ)f(τ) dτ +K±

t (t, τ) |τ=t f(t)−K±
t (t, τ) |τ=−t f(−t)

+
K±(t, t)

dt
f(t) +K±(t, t)f ′(t)− K±(t,−t)

dt
f(−t)−K±(t,−t)f ′(−t),

we get

K±
ττ (t, τ) = K±

tt (t, τ)± c2K±(t, τ), (2.3)

dK±(t, t)
dt

+ lim
τ→t

(
K±

t (t, τ) +K±
τ (t, τ)

)
= ∓c2, (2.4)

dK±(t,−t)

dt
+ lim

τ→−t
(K±

t (t, τ) +K±
τ (t, τ)) = 0, (2.5)

Let K±(t, τ) ∈ C1(Ω), Ω ∩ {(t, τ) | t = τ} �= ∅. Then for (t, x) ∈ Ω

d

dt
K±(t, t) = lim

τ→t

(
∂K±(t, τ)

∂t
+

∂K±(t, τ)
∂τ

)
.

Therefore, (2.4) and (2.5) take the form

dK±(t, t)
dt

= ∓c2

2
, (2.6)

K±(t,−t) = const . (2.7)

Introducing the new variables

u =
t+ τ

2
, v =

t− τ

2
(2.8)

and setting H±(u, v) = K±(u+ v, u− v) = K±(t, τ) we obtain the problem

H±
u,v(u, v) = ∓c2H±(u, v), (2.9)

H±(u, 0) = ∓c2

2
u. (2.10)

To construct kernels satisfying (2.9)–(2.10), one can use the formula

H±(u, v) = ∓c2

2
u∓ c2

u∫

0

dα

v∫

0

H±(α, β) dβ. (2.11)

Consider the iterations

H±
0 (u, v) = ∓c2

2
u,

H±
n+1(u, v) = ∓c2

u∫

0

dα

v∫

0

H±
n (α, β) dβ.
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From the first iterations we get

H±
1 (u, v) =

1

2

(∓c2
)2 u2

2!
v,

H±
2 (u, v) =

1

2

(∓c2
)3 u3

3!

v2

2!
,

H±
n (u, v) =

1

2

(∓c2
)n+1

n!(n+ 1)!
un+1vn.

We use the formulas for the Bessel functions and modified Bessel functions of the first kind for

m ∈ N ∪ {0} (see, for example, [3])

Jm(x) =
∞∑

n=0

(−1)n

22n+mn!(m+ n)!
x2n+m, Im(x) =

∞∑

n=0

1

22n+mn!(m+ n)!
x2n+m.

Summing up the Neumann series, we get

H±(u, v) =
1

2

∞∑

n=0

(∓c2
)n+1

n!(n+ 1)!
un+1vn =

c
√
u

2
√
v

{
−J1(2c

√
uv),

I1(2c
√
uv).

Using the asymptotic formulas for 0 < x 	 √
α+ 1

Jα(x) → 1

Γ(α+ 1)

(x
2

)α
, Iα(x) = i−αJα(ix),

we see that (2.10) is satisfied. Returning to x and t, we get

K±(t, τ) =
c
√
t+ τ

2
√
t− τ

⎧
⎨

⎩

−J1

(
c
√
t2 − τ2

)
;

I1

(
c
√
t2 − τ2

)
.

It is easy to see that K±(t,−t) = 0 and the condition (2.7) is satisfied.

3 Application of Vekua–Erdélyi–Lowndess Transmutations
to the Cauchy Problem

Theorem 3.1. Let A be a linear operator, and let w be a solution to the problem

wtt = Aw, w = w(x, t), (3.1)

w(x, 0) = f(x), wt(x, 0) = g(x). (3.2)

Then the function wc = S+w, where

(S+)tw(x, t) = w(x, t)− c

2

t∫

−t

√
t+ τ√
t− τ

J1(c
√

t2 − τ2)w(x, τ) dτ,

is a solution to the problem

wc
tt + c2wc = Awc, wc = wc(x, t), (3.3)

wc(x, 0) = f(x), wc
t (x, 0) = g(x). (3.4)
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Proof. It is easy to see that wc(x, 0) = w(x, 0). Therefore, if w satisfies the first condition

in (3.2), then wc satisfies the first condition in (3.4). The converse is also valid. We have

wc
t (x, t) = wt(x, t)− c

2

∂

∂t

t∫

−t

√
t+ τ√
t− τ

J1(c
√

t2 − τ2)w(x, τ) dτ

= wt(x, t)− c

2

(

lim
τ→t

(√t+τ√
t−τ

J1(c
√

t2−τ2)w(x, τ)
)
− lim

τ→−t

(√t+τ√
t−τ

J1(c
√

t2−τ2)w(x, τ)
)
+

+

t∫

−t

∂

∂t

√
t+τ√
t−τ

J1(c
√

t2−τ2)w(x, τ) dτ

)

= wt(x, t)−c2

2

(

tw(x, t)+

t∫

−t

( tJ0(c
√
t2−τ2)

t−τ
−

√
t+τ

c(t−τ)3/2
J1(c

√
t2−τ2)

)
w(x, τ) dτ

)

.

Letting t → 0, we get wc
t (x, 0) = wt(x, 0).

We show that, if w satisfies Equation (3.1), then wc satisfies Equation (3.3). We have

(D2
t + c2)wc = (D2

t + c2)S+w = S+D
2
tw = S+Aw = ASw = Awc.

Therefore, (D2
t + c2)wc = Awc and wc satisfies Equation (3.3).

The following result is proved in the same way as Theorem 3.1.

Theorem 3.2. Let A be a linear operator, and let w be a solution to the problem

wtt = Aw, w = w(x, t),

w(x, 0) = f(x), wt(x, 0) = g(x).

Then the function wc = S−w, where

(S−)tw(x, t) = w(x, t) +
c

2

t∫

−t

√
t+ τ√
t− τ

I1

(
c
√
t2 − τ2

)
w(x, τ) dτ

is a solution to the problem

wc
tt − c2wc = Awc, wc = wc(x, t),

wc(x, 0) = f(x), wc
t (x, 0) = g(x).

Example 3.1. Consider the wave equation in the one-dimensional case with the initial

conditions

wtt = a2wxx, w(x, 0) = f(x), wt(x, 0) = g(x).

Recall that the solution is given by the d’Alembert formula

w(x, t) =
f(x− at) + f(x+ at)

2
+

1

2a

x+at∫

x−at

g(s)ds.
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By Theorem 3.1,

wc(x, t) = (S+)tw(x, t) = w(x, t)− c

2

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√

t2 − τ2
)
w(x, τ) dτ

=
f(x− at) + f(x+ at)

2
− c

4

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√
t2 − τ2

)
(f(x− aτ) + f(x+ aτ)) dτ

+
1

2a

x+at∫

x−at

g(s)ds− c

4a

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√

t2 − τ2
)
⎛

⎝
x+aτ∫

x−aτ

g(s)ds

⎞

⎠ dτ (3.5)

is a solution to the telegraph equation

wc
tt = a2wc

xx − c2wc, wc(x, 0) = f(x), wc
t (x, 0) = g(x).

We transform the second term on the right-hand side of (3.5) as follows:

c

4

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√

t2 − τ2
)
(f(x− aτ) + f(x+ aτ)) dτ

=
c

4

t∫

−t

t+ τ√
t2 − τ2

J1

(
c
√

t2 − τ2
)
[f(x− aτ) + f(x+ aτ)] dτ

=
ct

2

t∫

−t

J1

(
c
√
t2 − τ2

)

√
t2 − τ2

f(x− aτ) dτ = {x+ aτ = s} =
ct

2a

x+at∫

x−at

J1

(
c
√

t2 − (
x−s
a

)2
)

√
t2 − (

x−s
a

)2
f(s) ds.

Taking account that

∫
τ
J1

(
c
√
t2 − τ2

)

√
t2 − τ2

dτ =
1

c

(
J0(c

√
t2 − τ2)− 1

)
+ C,

we transform the third and fourth terms on the right-hand side of (3.5) as follows:

(S+)t
1

2a

x+at∫

x−at

g(s)ds =
1

2a

x+at∫

x−at

g(s)ds− c

4a

t∫

−t

t+ τ√
t2 − τ2

J1

(
c
√

t2 − τ2
)
⎛

⎝
x+aτ∫

x−aτ

g(s)ds

⎞

⎠ dτ

=
1

2a

x+at∫

x−at

J0

(

c

√

t2 − (x− s)2

a2

)

g(s)ds.
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As a result, we get the known formula (see, for example, [4])

wc(x, t) =
f(x− at) + f(x+ at)

2
− ct

2a

x+at∫

x−at

J1

(
c
√

t2 − (x−s)2

a2

)

√
t2 − (x−s)2

a2

f(s)ds

+
1

2a

x+at∫

x−at

J0

(

c

√

t2 − (x− s)2

a2

)

g(s)ds.

Example 3.2. The following problem describes transverse vibrations of elastic rods:

wtt = −a2wxxxx, w(x, 0) = f(x), wt(x, t) = ag′′(x) (3.6)

and has the Boussinesq solution (see, for example, [4])

w(x, t) =
1√
2π

∞∫

−∞
f(x− 2p

√
at)(cos(p2) + sin(p2))dp

+
1

a
√
2π

∞∫

−∞
g(x− 2p

√
at)(cos(p2)− sin(p2))dp.

By Theorem 3.1,

wc(x, t) = (S+)tw(x, t) = w(x, t)− c

2

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√
t2 − τ2

)
w(x, τ) dτ

=
1√
2π

∞∫

−∞
f(x− 2p

√
at)(cos(p2) + sin(p2))dp+

1

a
√
2π

∞∫

−∞
g(x− 2p

√
at)(cos(p2)− sin(p2))dp

− c

2
√
2π

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√

t2 − τ2
)
⎛

⎝
∞∫

−∞
f(x− 2p

√
aτ)(cos(p2) + sin(p2))dp

⎞

⎠ dτ

− c

2a
√
2π

t∫

−t

√
t+ τ√
t− τ

J1

(
c
√
t2 − τ2

)
⎛

⎝
∞∫

−∞
g(x− 2p

√
aτ)(cos(p2)− sin(p2))dp

⎞

⎠ dτ

is a solution to the Cauchy problem for the perturbed Boussinesq type equation with an addi-

tional parameter

wc
tt = −a2wc

xxxx − c2wc, wc(x, 0) = f(x), wc
t (x, 0) = ag′′(x).
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