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Abstract—We study compactly supported solutions u(x, t) ≥ 0, x ∈ R, t ≥ 0, of a one-dimensional
quasilinear heat transfer equation. The equation has a transport coefficient linear in u and a self-
consistent source αu+ βu2 of general form. For the blow-up time of compactly supported solutions,
we establish two-sided estimates functionally depending on the initial conditions u(x, 0).
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1. INTRODUCTION

The quasilinear parabolic equation of the general form

u̇ = (k(u)ux)x + f (ux, u) (1)

for functions u(x, t), x ∈ R, t ≥ 0, where ux ≡ ∂u/∂x and u̇ ≡ ∂u/∂t, with a transport coefficient
k(u) ≥ 0 and a measurable function f (ux, u) of the current values of u(x, t) and ux(x, t) is the basis
for various models studied in mathematical physics (e.g., see [1]). In this case, as a rule, one is interested
in nonnegative solutions u(x, t) ≥ 0 of this equation with zero boundary conditions. A special case
of such an equation is one in which k(0) = 0. In this case, solutions with a weak discontinuity may
arise that have the solution u(x, t) = 0 on one side of the discontinuity [1]. This phenomenon was
predicted in [2] and was subsequently studied in various publications (e.g., see [3]); in particular, the
conditions for stopping the front were studied in [4]. Assume that the function f (ux, u) in the equation
can be represented as f (ux, u) = (F (u))x + g(u), where F (u) is differentiable with respect to u and the
function g(u) is measurable. If F (u) is other than linear and tends to infinity as u → ∞, then, as is
well known, such an equation no longer has global solutions owing to the formation of discontinuities
in the solution u(x, t) in finite time. Moreover, weak solutions of the Cauchy problem are no longer
determined in a unique way. The term (F (u))x in this case describes the transfer phenomenon. The
concept of an entropy solution is introduced to ensure uniqueness [5]. A substantial number of papers
have already been devoted to the study of such solutions (e.g., see [6]–[8]). Depending on the properties
of the function g(u), the solutions of Eq. (1) may manifest different qualitative behavior [1]. Of particular
interest is the study of solutions u(x, t) of Eq. (1) for f (ux, u) = (F (u))x + g(u) with g(u) > 0. In
this case, the solutions of this equation can go into the so-called blow-up mode. Such solutions
u(x, t) exist only on a finite time interval t ∈ [0, t∗) so that u(x, t) → ∞ at some point x ∈ R as t → t∗,
where t∗ is called the blow-up time. This mode is realized under a certain asymptotic behavior of the
function g(u), namely, g(u) ∼ uγ , γ > 1. The main direction of these publications is related to the
study of the conditions under which a blow-up mode arises and to determining the global characteristics
of the corresponding solutions. We will further be interested in the special case of Eq. (1) in which
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F ≡ 0. In this case, we refer to the function g(u) as a self-consistent source. The study of blow-up
modes for such an equation has a long history [9]–[15]. The research into these modes is summarized
in the monograph [16]. Among the more recent advancements in the study of blow-up modes, we
note [17], [18], where it was studied how to determine the critical index of nonlinearity that causes
the blow-up and how to estimate the blow-up time and the size of the compact domain in which such
a blow-up occurs.

In the present paper, we consider the degenerate equation (1) with F ≡ 0 taking into account terms
that are at most quadratic in the function u, namely,

u̇ = (uux)x + αu+ βu2, (2)

where α, β ∈ R. We study solutions compactly supported in [c−, c+] ⊂ R. They have a blow-up for
β > 0 and also “vanish” in finite time for β < 0. We propose an alternative (in our opinion) method
for two-sided estimation of blow-up time that was first used by one of the authors in [19], [20] without
sufficient mathematical justification. Here we fill the gap, and we hope that this method will be developed
further.

2. MAXIMUM PRINCIPLE

In this section, we prove the maximum principle for quasilinear parabolic equations in the form pre-
sented in the monograph [16], where, however, its proof is not given, and then we present a generalization
of this principle to compactly supported weak solutions of degenerate equations of this type.

Let T > 0 and K > 0 be arbitrary constants. Consider the Banach space C2,1([−K,K], [0, T ]) of
functions u(x, t) of two variables 〈x, t〉 twice continuously differentiable with respect to x ∈ [−K,K]
and continuously differentiable with respect to t ∈ [0, T ] with the norm

‖u‖ = max
j∈{0,1},k∈{0,1,2}

max
x∈[−K,K],t∈[0,T ]

∣
∣
∣
∣

∂j+ku(x, t)

∂tj∂xk

∣
∣
∣
∣
.

Lemma 2.1. Let k′(u) be a function satisfying the Lipschitz condition in u ∈ R, and let f (ux, u)
be a function satisfying the same condition in each of the variables 〈ux, u〉 ∈ R

2. Then the sets

S1 = {u ∈ C2,1([−K,K], [0, T ]) : u̇(x, t) < L[u](x, t)} , (3)

S2 = {u ∈ C2,1([−K,K], [0, T ]) : u̇(x, t) > L[u](x, t)} (4)

of functions, where

L[u](x, t) ≡ [(k(u)ux)x + f (ux, u)] (x, t), (5)

are open in the space C2,1([−K,K], [0, T ]), and their closures are, respectively, the sets

{u ∈ C2,1([−K,K], [0, T ]) : u̇(x, t) ≤ L[u](x, t)}
and

{u ∈ C2,1([−K,K], [0, T ]) : u̇(x, t) ≥ L[u](x, t) .

Proof. It suffices to prove the first part of the assertion. Assume that the function u(x, t) satisfies
the inequality u̇(x, t) < L[u](x, t). Since the function u̇(x, t)− L[u](x, t) is jointly continuous on the
rectangle [−K,K]× [0, T ], it follows that

−ε = max
x∈[−K,K],t∈[0,T ]

{(u̇− L[u])(x, t)} < 0.

Adding an arbitrary function δ(x, t) with a sufficiently small norm such that

δ̇(x, t) + (L[u]− L[u+ δ])(x, t) < ε (6)

to the function u(x, t), we conclude that all functions (u+ δ)(x, t) in C2,1([−K,K], [0, T ]) form
a neighborhood of u(x, t) contained in a set of the type (3). At the same time, the possibility of choosing
such a function δ(x, t) follows from the estimates

|δ̇(x, t) + (L[u]− L[u+ δ])(x, t)| ≤ ‖δ‖ + ‖L[u]− L[u+ δ]‖0
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≤ ‖δ‖ + ‖uxx‖ · ‖k(u) − k(u+ δ)‖0 + ‖δ‖ · ‖k(u+ δ)‖0
+ ‖ux‖2 ·

∥
∥k′(u)− k′(u+ δ)

∥
∥
0
+ ‖δ‖(2‖u‖ + ‖δ‖)

∥
∥k′(u+ δ)

∥
∥
0

+ ‖f (ux + δx, u+ δ) − f (ux, u)‖0 ,
where by ‖ · ‖0 we denote the norm on the space C([−K,K]× [0, T ]) of continuous functions u(x, t),

‖u‖0 = max
x∈[−K,K],t∈[0,T ]

|u(x, t)|.

The norm ‖δ‖, just as the norms

‖k(u)− k(u+ δ)‖0 ≤
∥
∥k′(u)

∥
∥
0
‖δ‖0,

∥
∥k′(u)− k′(u+ δ)

∥
∥
0
≤ K(u)‖δ‖0,

‖f (ux + δx, u+ δ) − f (ux, u)‖0 ≤ L (ux, u) ‖δ‖0
of the differences for ‖δ‖0 < ε can be made arbitrarily small, because the functions k′(u) and f(ux, u)
satisfy the Lipschitz condition with constants K(u) and L(ux, u), respectively, depending on ux and u.

In the same way, one proves that the set (4) is open. In this case, one takes

min
x∈[−K,K],t∈[0,T ]

{(u̇− L[u])(x, t)} = ε > 0

and chooses the function δ(x, t) in the same way so that inequality (6) holds.

Theorem 2.1. Let u(1)(x, t) and u(2)(x, t) be functions twice continuously differentiable with
respect to x ∈ R and satisfying the inequalities

u̇(1)(x, t) ≤
[(

k
(

u(1)
)

u(1)x

)

x
+ f

(

u(1)x , u(1)
)]

(x, t), (7)

u̇(2)(x, t) ≥
[(

k
(

u(2)
)

u(2)x

)

x
+ f

(

u(2)x , u(2)
)]

(x, t), (8)

respectively, for t ≥ t0 ∈ R+. If u(1) (x, t0) ≤ u(2) (x, t0) for all x ∈ R, then for each t > t0 one also
has the inequality u(1)(x, t) ≤ u(2)(x, t) for all x ∈ R.

Proof. First, consider the case in which the function u(1)(x, t) satisfies the strict inequality in (7).
Assume the contrary: for some t′ > t0, there exists a point x′ of contact between the graphs of u(1) (x, t′)

and u(2) (x, t′); that is, the equalities u(1) (x′, t′) = u(2) (x′, t′) and u
(1)
x (x′, t′) = u

(2)
x (x′, t′) hold. In

addition, the inequality u(1)xx (x′, t′) ≤ u
(2)
xx (x′, t′) must be satisfied in this case. Without loss of generality,

we assume that the point t′ is the first of all possible points of this type. Consequently, based on (7)
and (8) we have the inequality u̇(2) (x′, t′) > u̇(1) (x′, t′), and therefore, for sufficiently small ε > 0 we
have u(2) (x′, t′ + ε) > u(1) (x′, t′ + ε). Thus, there is no intersection of the graphs of u(1) (x, t′) and
u(2) (x, t′) at the point x′ at t′ + ε.

In the same way, it is proved that the graphs of u(1) (x, t′) and u(2) (x, t′) do not meet at any point
t′ > t0 if the function u(2)(x, t) satisfies the strict inequality in (8).

Now let us extend the proof to the general case. To this end, in the space

C2,1([−K,K], [0, T ]) × C2,1([−K,K], [0, T ])

consider pairs of functions
〈

u(1)(x, t), u(2)(x, t)
〉

that belong to the cone S in which the inequality
u(1)(x, t) ≤ u(2)(x, t) holds. In this space, the sets

S1 × C2,1([−K,K], [0, T ]), C2,1([−K,K], [0, T ]) × S2

are open by Lemma 2.1. It follows from the first part of the proof that the set

S ∩ (S1 × C2,1([−K,K], [0, T ])) ∩ (C2,1([−K,K], [0, T ]) × S2)

is nonempty and open. Then the theorem holds on the closure of this set for 〈x, t〉 ∈ [−K,K]× [0, T ].
By passing to the limit, first as K → ∞ and then as T → ∞, we conclude that the theorem holds for all
pairs

〈

u(1)(x, t), u(2)(x, t)
〉

of functions with the properties specified in the condition of the theorem.
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Remark. The presented proof of the maximum principle does not assume the uniqueness of the solution
of the Cauchy problem for Eq. (1); this is important in the case of the considered degenerate equation
with u = 0, where the solution of such a problem may not be unique.

Further, we will study solutions of degenerate hyperbolic equations (1) for which the functions
g(u) = f (ux, u) and k′(u) satisfy the Lipschitz condition and at the same time k(0) = 0 and k′(0) > 0.
We denote the class of such equations by B. For these equations, consider compactly supported
weak solutions u(x, t) of a special type. They are constructed as follows. Let w(x, t) be an “exact”
solution of the equation (a classical solution); that is, ẇ(x, t) = (k(w)wx)x + g(w). Assume that
w (x−(t), t) = w (x+(t), t) = 0 and define

u(x, t) =

{

w(x, t), x ∈ [x−(t), x+(t)] ,

0, R\ (x−(t), x+(t)) .

If u(x, t) is not an exact solution, then at least at one of the points x′ = x±(t) the derivative
(du/dx)〈x±(t),t〉 is not zero.

It is obvious that the functions u(x, t) are weak solutions if limx→x±(t) |wx(x, t)| < ∞, because one
has ˆ ∞

−∞
(ẇ − (k(w)wx)x − g(w)) (x, t) dx = 0.

We denote the class of all such weak solutions by R. Then the following assertion holds.

Theorem 2.2. Let u(1)(x, t) and u(2)(x, t) be weak solutions in the class R of an equation in the
class B, and let the following inequalities hold for t ≥ t0 ∈ R+:

u̇(1)(x, t) ≤
[(

k
(

u(1)
)

u(1)x

)

x
+ g

(

u(1)
)]

(x, t), (9)

u̇(2)(x, t) ≥
[(

k
(

u(2)
)

u(2)x

)

x
+ g

(

u(2)
)]

(x, t). (10)

If u(1) (x, t0) ≤ u(2) (x, t0) for all x ∈ R, then for each t > t0 and for all x ∈ R one also has the
inequality u(1)(x, t) ≤ u(2)(x, t).

Proof. Let functions u(1)(x, t) and u(2)(x, t) of the class R with supports
[

x
(j)
− (t), x

(j)
+ (t)

]

, j ∈ {1, 2},

satisfy the inequality u(1) (x, t0) ≤ u(2) (x, t0), so that
[

x
(1)
−
(

t0
)

, x
(1)
+

(

t0
)]

⊂
[

x
(2)
−
(

t0
)

, x
(2)
+

(

t0
)]

. As-
sume that for some t′ > t0 there exists a point x′ at which u(1) (x′, t′) = u(2) (x′, t′) and for sufficiently
small ε > 0 one has u(1) (x′, t′ + ε) > u(2) (x′, t′ + ε). Moreover, t′ is the first of all possible points of

this type, and therefore, at the point t′ one has the inclusion
[

x
(1)
−
(

t′
)

, x
(1)
+

(

t′
)]

⊂
[

x
(2)
−
(

t′
)

, x
(2)
+

(

t′
)]

.

If x′ ∈
[

x
(1)
−
(

t′
)

, x
(1)
+

(

t′
)]

, then the inequality u(1) (x′, t′ + ε) > u(2) (x′, t′ + ε) is impossible for
any sufficiently small ε > 0 according to the proof of Theorem 2.1. Consider the case in which

x′ ∈
{

x
(1)
− (t′) , x

(1)
+ (t′)

}

. To be definite, assume that x′ = x
(1)
+ (t). If in a neighborhood of the point

x
(1)
+ (t) the values of both functions u(1)(x, t) and u(2)(x, t) are represented as exact solutions of the

equation, that is, this point is an extreme point of the support of exact solutions, then the reasoning
given in the proof of the statement of Theorem 2.1 is again valid for it. Therefore, we assume that,

at least for one of the functions, the point x(1)+ (t) is not an extreme point of the support of the exact
solution. It follows that

(

du(j)/dx
)〈

x
(1)
+ (t′),t′

〉 �= 0, j ∈ {1, 2}.

Then one has u(1)
(

x
(1)
+ (t′) , t′

)

= u(2)
(

x
(1)
+ (t′) , t′

)

= 0 and

0 ≤
(

du(1)/dx
)2(

x
(1)
+

(

t′
)

, t′
)

<
(

du(2)/dx
)2(

x
(1)
+

(

t′
)

, t′
)

.
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Consequently, in view of the properties of the function k(u), at this point one has the inequality

[

u̇(1)
(

x, t′
)]

x=x
(1)
+

= k′(0)

⎡

⎣

(

du(1)

dx

)2

〈x+(t′),t′〉
−
(

du(2)

dx

)2

〈x+(t′),t′〉

⎤

⎦ < 0.

Therefore, the inequality

u(1)
(

x
(1)
+

(

t′
)

, t
)

> u(2)
(

x
(1)
+

(

t′
)

, t
)

, 0 < t− t′ < ε,

is also impossible at this point, because the change of each of the functions u(1)(x, t) and u(2)(x, t) at

the point x = x
(1)
+ (t′) with time t is determined based on the exact solution of Eq. (1).

Theorems 2.1 and 2.2 admit obvious generalizations. The conditions for the Lipschitz property of
the functions k′(u), f (ux, u), and g(u) can be, without changing the strategy for proving the theorems,
relaxed by replacing them with the conditions for the Hölder property of these functions with respect to
their arguments with an arbitrary, however small Hölder exponent, and moreover, further weakening of
the conditions imposed on these functions is possible.

3. ASYMPTOTICS OF BLOW-UP SOLUTIONS

In this section, we determine the possible type of the asymptotic behavior as t → t∗ of a solution
u(x, t) of Eq. (2) assuming that the solution is compactly supported in some interval [c−, c+] and tends
to infinity at some point x ∈ [c−, c+]. Here t∗ may be either finite or infinite.

First, we prove a statement related to the theorem on the differentiation of function sequences.

Lemma 3.1. Let 〈yn(x);n ∈ N〉 be a sequence of continuously differentiable functions on an inter-
val [c−, c+] ⊂ R such that the sequence 〈y′n(x);n ∈ N〉 of their derivatives is uniformly bounded,
maxx∈[c−,c+] |y′n(x)| < M , and converges at each point x ∈ [c−, c+] to a bounded measurable
function v(x), x ∈ [c−, c+]. In addition, assume that there exists a point c ∈ [c−, c+] at which there
exists a limit

lim
n→∞

yn(c) ≡ y(c). (11)

Then the sequence 〈yn(x);n ∈ N〉 uniformly converges at each point x ∈ [c−, c+] to a differen-
tiable function

lim
n→∞

yn(x) ≡ y(x) (12)

such that y′(x) = v(x).

Proof. Let us write the expression for the functions yn(x), n ∈ N, in the form

yn(x) = yn(c) +

ˆ x

c
v(ξ) dξ +

ˆ x

c

[

y′n(ξ)− v(ξ)
]

dξ.

By Egorov’s theorem (e.g., see [22]), for any ε > 0 there exists a set Eε such that mes ([c−, c+] \Eε) < ε
and the function sequence 〈y′n(x);n ∈ N〉 uniformly converges as x ∈ Eε to the function v(x). We can
assume that the set Eε is closed. From the estimate of the integral
∣
∣
∣
∣

ˆ x

c

[

y′n(ξ)− v(ξ)
]

dξ

∣
∣
∣
∣
≤
(

max
x∈[c−,c+]

|v(x)| +M

)

mes ([c−, c+] \Eε) + mes (Eε) max
x∈Eε

∣
∣y′n(x)− v(x)

∣
∣ ,

in view of (12), after passing to the limit as n → ∞, we find that at each point x ∈ [c−, c+] one has the
inequality

lim sup
n→∞

∣
∣
∣
∣
yn(x)− y(c)−

ˆ x

x
v(ξ) dξ

∣
∣
∣
∣
≤ ε

(

max
x∈[c−,c+]

|v(x)| +M
)

.
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Since the number ε > 0 is arbitrary, it follows that the sequence 〈yn(x);n ∈ N〉 converges uniformly at
each point x ∈ [a, b] to the function

y(x) = y(c) +

ˆ x

0
v(ξ) dξ. (13)

Since in this case the sequence 〈y′n(x);n ∈ N〉 converges uniformly on Eε, we can apply the theorem on
the differentiation of function sequences and find that y′(x) = v(x) for x ∈ Eε. Since ε > 0 is arbitrary,
we find that this equality holds everywhere on [c−, c+].

Let u(x, t) be a solution of Eq. (2) supported inside [c−, c+] and such that at some points of this
interval it tends to infinity as t → t∗, so that the solution u(x, t) no longer makes sense for t > t∗. Let us
also assume that the asymptotic behavior as t → t∗ of the solution u(x, t) is uniform in x ∈ [c−, c+].
This means that as t → t∗ there exists a function ϕ(t) → ∞ for which there exists a finite limit
limt→t∗ u(x, t)/ϕ(t) which is a bounded function measurable with respect to x ∈ [c−, c+],

u(x) = lim sup
t→t∗

u(x, t)

ϕ(t)
≥ 0,

which is not identically zero. It follows from the defining formulas (12) and (13) that, in the case of
uniform asymptotics, one has u(x, t) = u(x)ϕ(t)(1 + o(1)), where the function o(t) tends to zero as
t → t∗ uniformly with respect to x ∈ [c−, c+]. The following assertion holds.

Theorem 3.1. If u(x, t) is a solution of Eq. (2) compactly supported in the interval [c−, c+] and
has the asymptotic behavior u(x, t) = u(x)ϕ(t)(1 + o(1)) → ∞ as t → t∗ uniformly in x ∈ [c−, c+],
then the nonnegative function u(x) is twice differentiable and satisfies the differential equation

(uux)x + βu2 = A2u, A = const, (14)

so that ϕ(t) = ϕ(0)
(

1−A2ϕ(0)t
)−1 and t∗ =

[

A2ϕ(0)
]−1.

Proof. Since the asymptotic formula can be differentiated with respect to t, it follows from Eq. (2) that
[(

u(x, t)

ϕ(t)

[
u(x, t)

ϕ(t)

]

x

)

x

− ϕ−2(t)ϕ̇(t)u(x) + α
u(x)

ϕ(t)

]

(1 + o(1)) = −βu2(x).

Based on this, passing to the limit as t → t∗ and taking into account the fact that u(x) �≡ 0, the
right-hand side of the equality is independent of t, and ϕ(t) → ∞, we find that there exist limit values

lim
t→t∗

(
u(x, t)

ϕ(t)

[
u(x, t)

ϕ(t)

]

x

)

x

≡ v(x), lim
t→t∗

ϕ−2(t)ϕ̇(t) ≡ C = const,

which must satisfy the relation v(x) = Cu(x)− βu2(x), while the function ϕ(t) must satisfy the equa-
tion ϕ̇(t) = Cϕ2(t). It follows from the last equation that ϕ(t) = ϕ(0)(1 − Cϕ(0)t)−1. Since ϕ(t) > 0
by construction, we have ϕ(0) > 0, and for ϕ(t) to tend to infinity it is necessary that C = A2 > 0. In

this case, t∗ =
[

A2ϕ(0)
]−1.

Since the function u(x) is bounded and measurable on [a, b] by assumption, we see that the function
v(x) must have the same property. By the same pattern, applying Lemma 2.1 to an arbitrary sequence
〈tn;n ∈ N〉 monotonically tending to t∗ as n → ∞ and to the corresponding function sequence

〈yn(x) = [u (x, tn) /ϕ (tn)] [ux (x, tn) /ϕ (tn)] ;n ∈ N〉 ,
we conclude that the latter sequence uniformly converges to the limit function

y(x) = u(x) lim
n→∞

[ux (x, tn) /ϕ (tn)]

and y′(x) = v(x). Moreover, for the point c in the statement of Lemma 2.1 for the functions yn(x),
n ∈ N, we take c = c−, because u (c−, tn) = 0 by assumption.
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Since the function y(x) is bounded and measurable, it follows that so is the function y(x)/u(x) at
the points where u(x) �= 0. Consider the function sequence 〈[ux (x, tn) /ϕ (tn)]x ;n ∈ N〉, which tends
to y(x)/u(x) as n → ∞ and, at the same time, satisfies u (c−, tn) = 0. Since

lim
n→∞

ux(x, tn)

ϕ(tn)
= u′(x),

we can again apply Lemma 2.1 to this sequence and find that u′(x) = y(x)/u(x).

It follows from the argument in the last two paragraphs that [u(x)u′(x)]′ = v(x). Using the equality
v(x) = Cu(x)− βu2(x), we obtain formula (14).

Applying the standard method for reducing the second-order autonomous equation (14) to quadra-
tures, we obtain the following assertion.

Corollary. The class of all admissible functions uniformly and asymptotically accurately ap-
proximating nonnegative solutions u(x, t) of Eq. (2) with compact support suppu(x, t) ⊂ [c−, c+]
and with u(x, t) → ∞ as t → t∗ is nonempty only if β > 0 and c+ − c− ≥ π

√
2β, and it is described

by the formula

u(x, t) =
2A2

3β

(

1−A2ϕ(0)t
)−1 (

1 + cos
(

L+ (β/2)1/2x
))

, (15)

in which t∗ =
[

A2ϕ(0)
]−1 and the extreme points x± of the solution support must satisfy the

conditions x− > c− and x+ < c+, where

c−(β/2)
1/2 + L < π (2n− + 1) , c+(β/2)

1/2 + L > π (2n+ + 1) , (16)

and n+ > n−. Further, it is necessary that c+ − c− ≥ π(2β)1/2.

Proof. Formula (15) can be obtained by a straightforward computation of the general solution of
Eq. (14). The extreme points x± must satisfy the conditions L+ x±(β/2)1/2 = (2n± + 1) π, whence
the constraints (16) folloiw. For n− = 0 and n+ = 1, we obtain c+ − c− > π

√
2β.

4. WEAK MODEL SOLUTIONS

The aim of this section is to construct model weak solutions u±(x, t) of Eq. (2) on the basis of which
we will find two-sided estimates of the blow-up time t∗ of compactly supported solutions satisfying the
condition c+ − c− > π

√
2β with some β > 0. Here the functions u+(x, t) and u−(x, t) give upper and

lower bounds, respectively, for the localized solutions u(x, t).

We seek solutions w(x, t) of Eq. (2) in the form

w(x, t) = a(t) + b(t) cos πL−1
∗ (x+ x0) , (17)

where the functions a(t) and b(t) and the parameter L∗ are unknown. Substituting this expression into
Eq. (2), we arrive at the identity

ȧ(t) + ḃ(t) cos πL−1
∗ (x+ x0) = αa(t) + βa2(t) + π2L−2

∗ b2(t)

+
(

αb(t) + 2βa(t)b(t) − κπ2L−2
∗ a(t)b(t)

)

cos πL−1
∗ (x+ x0)

+
(

β − 2π2L−2
∗
)

b2(t) cos2 πL−1
∗ (x+ x0) .

The harmonic balance with respect to the variable x necessarily leads to the equality L∗ = π(2/β)1/2

and to a conservative system of ordinary differential equations for the functions a(t) and b(t),

ȧ = αa+ β

(

a2 +
b2

2

)

, ḃ = αb+
3

2
βab. (18)
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(a) (b)

Fig. 1. Phase plane of the dynamical system 〈a(t), b(t)〉.

Thus, the family of model solutions w(x, t) is completely described by the initial data a(0) and b(0) of
the solutions of system (18) and the coordinate x0. The general view of the phase plane of the system
depending on the sign of α is presented in Fig. 1.

Model solutions for estimating exact compactly supported nonnegative solutions u(x, t) of Eq. (2) are
constructed based on Theorem 2.2. First, note that the derivative wx(x, t) is bounded; this allows using
the function w(x, t) to construct weak solutions of the class R. Let us introduce compactly supported
model solutions

u(j)(x, t) = aj(t) + bj(t) cos πL
−1
∗
(

x+ x
(j)
0

)

, j ∈ {1, 2},

according to formula (9), which are continuous nonnegative functions with supports
[

x
(j)
− (t), x

(j)
+ (t)

]

.
The additional conditions

∣
∣aj(t)

∣
∣ ≤ bj(t) and bj(t) > 0, j ∈ {1, 2}, are imposed on the pairs of coeffi-

cients to ensure that there exists a range of the coordinate x where, by construction, the model solutions
are positive and their continuity can be guaranteed. If these inequalities are satisfied, then u(j)(x, t) > 0

at the point −x
(j)
0 , u(1,2)

(

−x
(j)
0

)

= aj(t) + bj(t) > 0, and the graphs of the functions w(x, t) with the
pairs of coefficients

〈

aj(t), bj(t)
〉

have points of intersection with the level u = 0; i.e., there exist solutions
of the equation

aj(t) + bj(t) cos πL
−1
∗
(

x+ x
(j)
0

)

= 0,

in particular, for t =0. In this case, the boundaries of the supports are defined as the solutions of the
equation

aj(t) + bj(t) cos πL
−1
∗

(

x
(j)
± + x

(j)
0

)

= 0, j ∈ {1, 2},

on the part of the phase plane 〈a, b〉 defined by the inequality b ≥ |a|.
We assume that the solution u(x, t) has compact support whose initial size r is less than L∗. Then

there exist a point x
(1)
0 and parameter values a1(0), b1 > 0, and |a1| ≤ b1 for which the inequality

u(1)(x, 0) ≤ u(x, 0) holds. One can choose admissible values of the parameters x
(1)
0 , a1(0), and b1(0)

so as to ensure that the function u(1)(x, 0) approximates the function u(x, 0) from below in the most
optimal way.

In exactly the same way, we construct a model solution u(2)(x, t) with parameters a2(0), b2(0),

and x
(2)
0 in such a way that the inequality u(2)(x, 0) ≥ u(x, 0) holds but the size of its support does not

exceed L∗. By choosing the parameter values aj(0), bj(0), and x
(j)
0 , we have thereby fixed the solutions

〈aj(t), bj(t)〉, j ∈ {1, 2}, of the dynamical system 〈a(t), b(t)〉 with these values as the initial data. As
a result, by Theorem 2.2, the exact solution of Eq. (2) to be approximated satisfies the inequalities
u(1)(x, t) ≤ u(x, t) ≤ u(2)(x, t).
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Let this solution have a blow-up mode with blow-up time t∗ < ∞. Note that for α ≥ 0 any model
solution has a blow-up mode. If α < 0 and in this case the parameters 〈a−(0), b−(0)〉 can be chosen so

that the model solution u(1)(x, t) also has a blow-up mode with some blow-up time t
(1)
∗ , then, owing to

the indicated inequality, we have t
(1)
∗ ≥ t∗. In addition, the model solution u2(x, t) has a blow-up mode

with blow-up time t
(2)
∗ satisfying the inequality t

(2)
∗ ≤ t∗.

In view of the inequality u(1)(x, t) ≤ u(x, t) ≤ u(2)(x, t), the time-dependent support size r(t) of
the solution u(x, t) is also subject to the inequalities r1(t) ≤ r(t) ≤ r+(t) ≤ L∗, where rj(t) are the
sizes of the supports of the model solutions, j ∈ {1, 2}. Therefore, r (t∗) ≤ L∗. Taking into account
Theorem 3.1, we can state that the limit sizes of all supports coincide and are equal to L∗.

Thus, we now can estimate the blow-up time and the size of the localization domain of an arbitrary
solution of Eq. (2) with compact support whose size does not exceed L∗.

5. ESTIMATES OF THE BLOW-UP TIME

Let us analyze the behavior of trajectories of the system on the phase plane 〈a, b〉. The system has sin-
gular points whose coordinates 〈a, b〉 are solutions of the system of equations αa+ β

(

a2 + b2/2
)

= 0,
(α+ 3βa/2)b = 0.

The point of intersection 〈ac, 0〉 , ac = −2α/3β of the straight lines b = 0 and a = ac lies inside the
ellipse defined by the first equation, because the ellipse meets the a-axis at the points 0 and −α/β, and
therefore, the system has four singular points O = 〈0, 0〉, O′ = 〈−α/β, 0〉, and O± = 〈ac,±ac〉. The
matrix of the system linearized at an arbitrary point 〈a, b〉 has the form

⎛

⎝
α+ 2βa βb

3βb/2 α+ 3βa/2

⎞

⎠ .

It is diagonal at the points O and O′, where b = 0, and hence has the pairs 〈α+ 2βa, α + 3βa/2〉
of eigenvalues. They are equal to 〈α,α〉 at the point O and〈−α,−α/2〉 at the point O′. Thus, the
points O and O′ are nodes whose stability is determined by the sign of α. At the points O±, the matrix is
nondiagonal,

⎛

⎝
−α/3 2α/3

α 0

⎞

⎠ .

The eigenvalues of the matrix at these points are 〈α,−2α/3〉. Since they have opposite signs, it follows
that the points O± are saddle ones, in which the orientation of the saddle (the set of directions on the
separatrix arcs issuing from these points) is also determined by the sign of α as shown in Figs. 1, a
and 1, b. The turning points of a trajectory of the system on the phase plane in the direction of the
b-axis can only lie on the straight line a = ac, while the straight line b = 0 can only be an asymptote
of the trajectories. The turning points in the direction of the a-axis lie on the ellipse. The system has
solutions with the trajectories b = ±a, since after the substitutions b = ±a both equations in system (18)
coincide. Hence the trajectories passing through any point 〈a, b〉 with b > |a| are completely contained
in the quadrant defined by this inequality. The rays a = b, a ≥ 0, and a = −b, a ≤ 0, are trajectories of
the system. They contain the singular point O with a = 0, which is an unstable node for α > 0. On the
contrary, for α < 0 this singular point is a stable node with a = 0. In addition, for α < 0 the ray a = b
contains the saddle point O+ with a = 2|α|/3β = −ac, and for α > 0 the saddle point O+ is contained
by the ray a = −b. This analysis shows that the vector field of the system on the plane 〈a, b〉 has the form
shown in Fig. 1, a for α < 0 and Fig. 1, b for α > 0.

In the general case, system (18) can be integrated by the substitution a(t) = eαtA(t), b(t) = eαtB(t),
which reduces it to the system

Ȧ = βeαt
(

A2 +
1

2
B2

)

, Ḃ =
3

2
βeαtAB (19)
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with scale-invariant trajectories. The last property allows one to determine the trajectories of system (18)
by reduction to the homogeneous equation

dA

dB
=

2A2 +B2

3AB
. (20)

To construct model solutions uj(x, t), j ∈ {1, 2}, one needs to determine solutions 〈a(t), b(t)〉 of
system (18) satisfying the condition b(t) > |a(t)|. Then the corresponding pairs of functions 〈A(t), B(t)〉
satisfy the condition B(t) > |A(t)| as well. The trajectories defined by Eq. (20) are independent of the
constants α and β. For A > 0, it follows from (20) that A increases with B; i.e., a trajectory starting in
the right half-plane remains in it. If A < 0, then it follows from (20) that B is a decreasing function of A.
If the trajectory is in the quadrant {〈A,B〉 : B > |A|}, then it cannot meet the line B = 0. It can only
reach the point 〈0, 0〉 or cross the line A = 0 at the right angle (since dB/dA = 0) and go to the right
half-plane. Let us show that the second case holds.

Equation (20) can be integrated by the standard substitution w(B) = A/B, so that for the function
w(B) we obtain the equation B(dw/dB) =

(

1− w2
)

/3w. By separating the variables, we obtain the
family of solutions

∣
∣1− w2

∣
∣ = (b0/B)2/3 (21)

with an arbitrary constant b0 > 0.

The point 〈0, b0〉 at which w(B) = 0 is the point where the trajectory meets the straight line A = 0.
The value b0 = 0 corresponds to the degenerate case of the trajectory consisting of the half-lines
B = −A for A < 0 and B = A for A > 0. For w(B) < 1, we have the following formula for the
trajectories in the quadrant {〈A,B〉 : B > |A|} of the plane 〈A,B〉:

A = ±B
(

1− (b0/B)2/3
)1/2

, (22)

where the signs (+) and (−) correspond to the parts of the trajectory in the right and left half-planes,
respectively. It follows from (22) that asymptotically B ∼ ±A as B → ∞.

Along with the trajectories (22), there exist trajectories described by formula (21) for w2 > 1,

A = ±B
(

1 + (b0/B)2/3
)1/2

.

However, |A| > B and B > 0 for such trajectories, and therefore, they are located outside the domain
{〈A,B〉 : B > |A|}; this is of interest when constructing the model functions u(j)(x, t).

The time dependence of the solutions of interest to us can be found by substituting formula (22) into
the second equation in system (19),

Ḃ = ±3

2
βeαt ·B2

(

1− (b0/B)2/3
)1/2

.

As a result, we obtain an equation implicitly determining the function B(t),

± b−1
0

ˆ b0/b(0)

b0/B

dξ
√

1− ξ2/3
=

3β

2α

(

eαt − 1
) (

arcsin (b0/b(0))
1/3 − arcsin (b0/B)1/3

)

+

(

(b0/b(0))
1/3

√

1− (b0/b(0))
2/3 − (b0/B)1/3

√

1− (b0/B)2/3
)

= ± (βb0/α)
(

eαt − 1
)

.

(23)
Expressing the parameter b0 in this equation via the initial data a(0), b(0), and

(b0/b(0))
1/3 = [1− (a(0)/b(0))2 ]1/2,
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we find the following equation for the implicit function B(t):

arcsin

[

1−
(
a(0)

b(0)

)2
]1/2

− arcsin

(
b(0)

B

)1/3
[

1−
(
a(0)

b(0)

)2
]1/2

+
|a(0)|
b(0)

[

1−
(
a(0)

b(0)

)2
]1/2

−
(
b(0)

B

)1/3
[(

1−
(
a(0)

b(0)

)2
)(

1−
(
b(0)

B

)2/3
(

1−
(
a(0)

b(0)

)2
))]1/2

= ±(βb(0)/α)
(

eαt − 1
)

(

1−
(
a(0)

b(0)

)2
)3/2

.

(24)

Let a(0) > 0. ThenA(0) > 0, and it follows from the first equation in (19) that Ȧ(t) > 0, i.e.,A(t) > 0
at subsequent time; that is, the motion occurs along the part of the trajectory in the right half-plane of the
plane 〈A,B〉. Then we need to select the sign (+) in (24). In this case, letting B → ∞ on the left-hand
side in the formula and setting t = t∗ on the right-hand side, we find a formula for the blow-up time,

t∗ = α−1 ln

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 +

α arcsin

[

1−
(
a(0)

b(0)

)2
]1/2

+
a(0)

b(0)

[

1−
(
a(0)

b(0)

)2
]1/2

βb(0)

(

1−
(
a(0)

b(0)

)2
)3/2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (25)

expressing it via the initial data. The expressions for t
(j)
∗ , j ∈ {1, 2}, in the above and subsequent

formulas are obtained by substituting a(0) ⇒ aj(0) and b(0) ⇒ bj(0).

For α > 0, the argument of the logarithm is obviously positive, and the blow-up time is well defined
for all initial data. For α < 0, for the blow-up time to exist, the argument of the logarithm must be
positive. This condition is expressed by the inequality

arcsin

[

1−
(
a(0)

b(0)

)2
]1/2

+
a(0)

b(0)

[

1−
(
a(0)

b(0)

)2
]1/2

<
βb(0)

|α|

(

1−
(
a(0)

b(0)

)2
)3/2

.

Equating the argument of the logarithm with zero yields the equation of the separatrix in Fig. 1, b, which,
on the plane 〈a, b〉, separates the domains with initial data that lead to a blow-up mode and the domain
in which the motion of system (18) is bounded. For a(0) > 0, this equation has the form

arcsin

[

1−
(
a(0)

b(0)

)2
]

+
a(0)

b(0)

[

1−
(
a(0)

b(0)

)2
]

=
βb(0)

|α|

(

1−
(
a(0)

b(0)

)2
)3/2

.

We introduce the following function C+ of the initial data:

C+ =

(

1−
(
a(0)

b(0)

)2
)−3/2

⎡

⎣arcsin

√

1−
(
a(0)

b(0)

)2

+
a(0)

b(0)

√

1−
(
a(0)

b(0)

)2
⎤

⎦ .

Then formula (25) takes the form

t∗ = α−1 ln

(

1 +
α

βb(0)
C+

)

In particular, t∗ = C+/βb(0) as α → 0.

Now let a(0) < 0. In this case, each trajectory of system (18) consists of two parts lying in the left
and right half-planes on the phase plane 〈a, b〉. Consider a given trajectory for t so large that we can
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assume that the trajectory has already crossed the straight line a = 0. If we set B = b0 in formula (23)
with the sign (−), then for the left part of the trajectory we find

arcsin (b0/b(0))
1/3 − π/2 + (b0/b(0))

1/3
√

1− (b0/b(0))
2/3 = − (βb0/α)

(

eαt0 − 1
)

, (26)

where t0 is the time of intersection of the straight line a = 0. On the contrary, having replaced the initial
condition b(0) with b0 in (23) with the sign (+), we obtain

(

π/2 − arcsin (b0/B)1/3
)

− (b0/B)1/3
√

1− (b0/B)2/3 = (βb0/α)
(

eαt − eαt0
)

. (27)

After passing to the limit as B → ∞ and t → t∗ in this formula, we obtain an equation for the blow-up
time in the form π/2 = (βb0/α)

(

eαt∗ − eαt0
)

. From formulas (26) and (27), expressing the parameter
b0 via the initial data and taking into account the fact that a(0) < 0, we find

βb(0)

α

(

eαt∗ − 1
)

(

1−
(
a(0)

b(0)

)2
)3/2

= π − arcsin

√

1−
(
a(0)

b(0)

)2

+
a(0)

b(0)

√

1−
(
a(0)

b(0)

)2

. (28)

Introducing the function

C− =

(

1−
(
a(0)

b(0)

)2
)−3/2

⎡

⎣π − arcsin

[

1−
(
a(0)

b(0)

)2
]1/2

+
a(0)

b(0)

[

1−
(
a(0)

b(0)

)2
]1/2

⎤

⎦ ,

we represent the formula for the blow-up time in the form

t∗ = α−1 ln

(

1 +
α

βb(0)
C∞

)

.

This function is positive, because the last term in square brackets does not exceed 1 in absolute value.
Therefore, for α > 0 there always exists a finite blow-up time. If α < 0, then for the existence of a time t∗
it is necessary that the argument of the logarithm be positive; i.e., C− < βb0/|α|. When passing to the
limit as α → 0, we obtain the similar formula t∗ = C−/βb(0). The equation for the separatrix in the
domain a(0) < 0 has the form

βb(0)

|α|

(

1−
(
a(0)

b(0)

)2
)3/2

= π − arcsin

[

1−
(
a(0)

b(0)

)2
]1/2

+
a(0)

b(0)

[

1−
(
a(0)

b(0)

)2
]1/2

.

6. CONCLUSIONS

As was already mentioned in the introduction, the main focus in the study of differential equations
whose solutions may experience a blow-up mode is on determining the conditions for the occurrence
of a blow-up. Nevertheless, it is desirable to obtain more detailed information about the solutions of
initial–boundary value problems for such equations. It should be noted that in applications in the fields
where these equations are used to describe evolution instabilities with blow-up modes, namely, in plasma
physics [4] as well as in the physics of semiconductor materials [19], [20], detailed information about the
initial states is usually missing. Order-of-magnitude data are used for rough characterization of the
initial conditions u(x, 0). In such a situation, it is important to be able to solve initial–boundary value
problems, at least in the form of asymptotic expansions, with random initial conditions that take values
in a fairly large set of possible random implementations. In this case, of course, one cannot restrict
oneself to solutions with compact supports of limited size. It is necessary to study solutions in the set
of functions that sufficiently rapidly tend to some positive constants on the boundaries of the admissible
domain. Finally, it is natural to generalize the results of the analysis of solutions of evolution equations
similar to (2) in the multidimensional case, especially for dimensions 2 and 3; this is associated with the
formulation of problems of mathematical physics related to specific applications.

In the present paper, we find two-sided estimates functionally dependent on the initial data for
the blow-up time for solutions with compact support having the size of the so-called fundamental
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length [16]. The assumption that the solution support is compact has permitted us to exclude the
influence of boundary conditions from consideration and focus on establishing the dependence of the
blow-up time on the initial data. The results obtained can be considered as an important step in the
solution of the stated general problems of the theory of equations with a blow-up mode.

In conclusion, note that the case of β > 0 was analyzed in the present paper. However, the opposite
case may also be of interest. In this case, it is not a blow-up mode that appears but an evolution in
which, in finite time, the solutions turn into the zero solution. The method we propose for estimating the
solution vanishing time remains unchanged.
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