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Abstract—We consider a model elliptic pseudodifferential equation and the simplest boundary
value problems in a quadrant in a Sobolev–Slobodetsky space of different orders of smoothness
in different variables. In the case of a special representation of the symbol, we describe a general
solution of the equation and consider the simplest boundary value problem with the Dirichlet
and Neumann conditions on the sides of the quadrant. This boundary value problem is reduced
to a system of integral equations, which, under additional assumptions about the structure of
the symbol, can also be reduced to a system of first-order difference equations.
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INTRODUCTION

The theory of boundary value problems for elliptic pseudodifferential equations originates from
the mid-1960s, namely, from the papers by M.I. Vishik and G.I. Eskin, the results of which are
summarized in the monograph [1]. The results obtained attracted attention and were further de-
veloped by a number of researchers (see, e.g., [2, 3]). The second author of the present paper also
showed interest in this topic, proposing his own approach to constructing the theory of boundary
value problems for elliptic pseudodifferential equations in domains with conical points and edges of
various dimensions on the boundary (see [4, 5] and the continuation in the papers [6–10]).

All studies were carried out in ordinary Sobolev–Slobodetsky spaces; however, spaces of different
orders of smoothness in different variables are possible [11–13]. Here we consider the simplest case
of Sobolev–Slobodetsky spaces of different order of smoothness in different variables and describe
the reduction of the boundary value problem to a system of integral equations.

1. ELLIPTIC EQUATIONS

In this subsection, we give some definitions and results to be relied on in what follows.

1.1. Sobolev–Slobodetsky Spaces of Different Smoothness

Following [14] (see also [11]), we introduce some convenient notation. We represent the mul-
tidimensional Euclidean space RM as an orthogonal sum of subspaces in which only some of the
coordinates x1, x2, . . . , xM are nonzero. More precisely, if K ⊂ {1, . . . ,M} is a nonempty set, then
we set

RK =
{
x ∈ RM : x = (x1, . . . , xM), xj = 0 for each j /∈ K

}
⊂ RM .

Let K1,K2, . . . ,Kn ⊂ {1, 2, . . . ,M} be some subsets such that

n⋃
j=1

Kj = {1, 2, . . . ,M}, Ki ∩Kj = ∅, i ̸= j.

Then we have the representation

RM = RK1 ⊕ RK2 ⊕ · · · ⊕ RKn ,

denoting an element of the space RKj by xKj
.
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For functions defined in the space RM , we use the standard Fourier transform

ũ(ξ) =

∫
RM

u(x)eix·ξ dx, ξ = (ξ1, . . . , ξM).

Now we define the Sobolev–Slobodetsky space HS(RM), where we write S = (s1, . . . , sn) for
simplicity, as the Hilbert space with inner product

(f, g) =

∫
RM

f(x)g(x) dx

and norm

∥f∥S =

 ∫
RM

(
1 + |ξK1

|
)2s1(

1 + |ξK2
|
)2s2 · · · (1 + |ξKn

|
)2sn∣∣f̃(ξ)∣∣2 dξ

1/2

.

Such HS-spaces have a standard set of properties of Sobolev–Slobodetsky spaces [11]. In particu-
lar, the space Hs(RM) is obtained by the following selection of the subsets Kj and the parameters sj:

K1 = K2 = · · · = Kn−1 = ∅, Kn = {1, 2, . . . ,M}, S = (0, 0, . . . , 0, s).

1.2. Model Equation and Solvability
In accordance with the locality principle, we focus on the study of a model pseudodifferential

equation with an operator whose symbol does not depend on the space variable. Detailed proofs of
the results presented here can be found in [15].

A pseudodifferential operator A is defined by the formula

(Au)(x) =
1

(2π)M

∫
RM

∫
RM

ei(x−y)·ξÃ(ξ)u(y) dy dξ,

where Ã(ξ) is a given measurable function called the symbol of the operator A.
Assume that the symbol Ã(ξ) satisfies the condition

c1

n∏
j=1

(
1 + |ξKj

|
)αj ≤

∣∣A(ξ)∣∣ ≤ c2

n∏
j=1

(
1 + |ξKj

|
)αj

, αj ∈ R, j = 1, . . . , n, (1)

with positive constant c1 and c2.
Denote α = (α1, . . . , αn).

Lemma 1. Let A be a pseudodifferential operator with symbol Ã(ξ) satisfying condition (1).
Then A : HS(RM) → HS−α(RM) is a continuous linear operator.

A simple consequence of this lemma is the following fact. If A is a pseudodifferential operator
with symbol Ã(ξ) satisfying condition (1), then the equation

(Au)(x) = v(x), x ∈ RM , (2)

with an arbitrary right-hand side v ∈ HS−α(RM) has a unique solution u ∈ HS(RM), and one has
the a priori estimate

∥u∥S ≤ const ∥v∥S−α.

Note that if we consider Eq. (2) not in the entire space RM but in another canonical domain
(also a cone), then such a simple corollary does not hold. Here, as before [6–10, 16–23], we will be
interested in the case of a convex cone that does not contain an entire line.

Let CKj
⊂ RKj be a convex cone not containing an entire line. We set

C = CK1
× CK2

× · · · × CKn
.

It is obvious that C is a convex cone in the space RM .
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Now we study the question of solvability of the equation

(Au)(x) = 0, x ∈ C, (3)

in the space HS(C).
Below we present definitions and results concerning the solvability of Eq. (3).

Definition 1. The space HS(C) consists of (generalized) functions in HS(RM) whose supports
are contained in C.

Denote by H̃S(C) the Fourier transform of the space HS(C).

Definition 2. The radial tubular domain over a cone C is the domain in the multidimensional
complex space CM given by

T (C) ≡ {z ∈ CM : z = x+ iy, x ∈ RM , y ∈ C}.

The conjugate cone
∗
C is the cone formed by the points x satisfying the condition

x · y > 0 for all y ∈ C;

here x · y is the inner product of x and y.

Definition 3. The wave factorization of an elliptic symbol Ã(ξ) with respect to a cone C is its
representation in the form

Ã(ξ) = A̸=(ξ)A=(ξ),

where the factors A ̸=(ξ), A=(ξ) must satisfy the following conditions:

1. A ̸=(ξ) and A=(ξ) are defined for all ξ ∈ RM , except possibly for the points ξ ∈ ∂
∗
C.

2. A ̸=(ξ) and A=(ξ) admit analytic continuation into the radial tubular domains T (
∗
C) and

T (−
∗
C), respectively, and satisfy the estimates

∣∣A±1
̸= (ξ + iτ)

∣∣ ≤ c1

n∏
j=1

(
1 + |ξKj

|+ |τKj
|
)±κj

,

∣∣A±1
= (ξ − iτ)

∣∣ ≤ c2

n∏
j=1

(
1 + |ξKj

|+ |τKj
|
)±(αj−κj) for each τ ∈

∗
C, κj ∈ R.

The vector κ = (κ1, . . . ,κn) is called the wave factorization index .

Remark 1. It should be noted that Definition 3 must be modified if some cone CKj
contains

an entire line, more precisely, if it has the form Rmj × Ckj−mj
, where Ckj−mj

, 0 ≤ mj ≤ kj, is
a convex cone that does not contain an entire line in a (kj − mj)-dimensional space. Recall that
by definition, for mj = 0 we set R0 × Ckj

≡ CKj
, for mj = kj, and accordingly, Rkj × C0 ≡ RKj .

Denoting
∑n

j=1 = Q, one can define Q-wave factorization, where the points of the Q-dimensional
space RQ = Rm1 × · · · × Rmn play the role of parameters (see [4]). Then Definition 3 corresponds
to the 0-wave factorization.

Theorem 1. If the symbol Ã(ξ) admits wave factorization with respect to a cone C with index κ
such that |κj − sj| < 1/2, j = 1, . . . , n, then Eq. (3) has only the zero solution in the space HS(C).

We assume that for each cone CKj
, j = 1, . . . , n, its surface equation is written as xkj

= φj(x
′
Kj

),
where φj : Rkj−1 → R, is a smooth function on Rkj−1 \ {0}, φj(0) = 0, xKj

= (x′
Kj

, xkj
).

Using the change of variables

t′Kj
= x′

Kj
,
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tkj
= xkj

− φj(x
′
Kj

),

we define an operator Tφj
: RKj → RKj as the operator of the above change of variables, while the

cone CKj
transforms into the upper half-space RKj

+ = {x ∈ RKj : xKj
= (x′

Kj
, xkj

), xkj
> 0}.

Remark 2. Of course, this change of variables is needed only in the multidimensional case
(m ≥ 2); in the one-dimensional case there is only one cone—a ray, whose boundary is a point.

In the reasoning below, we will use the notation Fm for the Fourier transform in an m-dimensional
space; therefore, FKj

denotes the Fourier transform in the space RKj .
According to the results in [8], we have the relations FKj

Tφj
= Vφj

FKj
.

Next, we introduce an operator Tφ : RM → RM using the formula Tφ =
∏n

j=1 Tφj
to obtain the

operator Vφ =
∏n

j=1 Vφj
for which the identity FMTφ = VφFM holds. We also introduce the vectors

N = (n1, . . . , nn), L = (l1, . . . , ln), and ε = (ε1, . . . , εn), nj, lj ∈ N, |δj| < 1/2, j = 1, . . . , n.

Theorem 2. If a symbol Ã(ξ) admits wave factorization with respect to a cone C with an index κ
such that κ − S = N + ε, then the general solution of Eq. (3) in terms of Fourier transforms has
the form

ũ(ξ) = A−1
̸= (ξ)V −1

φ

(
n1∑

l1=1

n2∑
l2=1

· · ·
nn∑

ln=1

c̃L(ξ
′
K)ξ

l1−1
k1

ξl2−1
k2

· · · ξln−1
kn

)
, (4)

where the cL(x
′
K) ∈ HSL(RM−n) are arbitrary functions and

SL = (s1 − κ1 + l1 − 1/2, . . . , sn − κn + ln − 1/2), lj = 1, . . . , nj, j = 1, . . . , n.

The following a priori estimate holds :

∥u∥S ≤ const

n1∑
l1=1

n2∑
l2=1

· · ·
nn∑

ln=1

∥cL∥SL
.

2. BOUNDARY VALUE PROBLEMS

In this subsection, we consider some simple formulations of boundary value problems related to
Theorem 2, which establishes the multiplicity of possible solutions of Eq. (3). Additional conditions
are needed to isolate a single solution. We start with the case of a two-dimensional cone. The
presence of the operator Vφ in formula (4) greatly complicates the formulation and study of boundary
value problems, but the two-dimensional case is a rare exception where one can do without such
an operator. This was demonstrated in the monograph [4], and a comparison of the two variants is
presented in [7].

2.1. Flat Angle and General Solution
For the case of a flat angle, only one situation with different smoothness in variables is possible,

namely, smoothness of the order s1 in one variable and s2 in the other. Our cone C has the form
of a direct product of two rays; we can assume it to be the first quadrant. It is assumed that
the symbol Ã(ξ) admits wave factorization with respect to C with an index κ = (κ1,κ2) such
that κj − sj = nj + εj, nj ∈ N, |εj| < 1/2, j = 1, 2. Let us show how the general solution
formula (4) looks like in this case.

Set
u−(x) = −(Au)(x), x ∈ R2.

By virtue of relation (3), we have u−(x) = 0, x ∈ C. Let us write Eq. (3) in the form

(Au)(x) + u−(x) = 0, x ∈ R2;

we apply the Fourier transform and obtain

Ã(ξ)ũ(ξ) + ũ−(ξ) = 0,
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and after wave factorization of the symbol Ã(ξ) with respect to C we obtain the relation

A ̸=(ξ)ũ(ξ) = −A−1
= (ξ)ũ−(ξ).

By Lemma 1,
A ̸=(ξ)ũ(ξ), A

−1
= (ξ)ũ−(ξ) ∈ H̃S−κ(R2),

but more precise inclusions are as follows (see [4] for details):

A̸=(ξ)ũ(ξ) ∈ H̃S−κ(C),

A−1
= (ξ)ũ−(ξ) ∈ H̃S−κ(R2 \ C).

(5)

It readily follows from the inclusions (5) that the inverse Fourier transform of these (generalized)
functions, owing to them being equal, can only be a function concentrated on the boundary of the
quadrant. Taking into account the structure of such functions [24], we can write

F−1
(
A ̸=(ξ)ũ(ξ)

)
=

r1∑
k=1

ck(x1)δ
k−1(x2) +

r2∑
k=1

dk(x2)δ
k−1(x1),

or

ũ(ξ) = A−1
̸= (ξ)

(
r1∑
k=1

c̃k(ξ1)ξ
k−1
2 +

r2∑
k=1

d̃k(ξ2)ξ
k−1
1

)
.

It remains to clarify the number of terms in the sums and the exponent sk of the space Hsk(R) that
includes the functions ck and dk.

We single out one term, for example, A−1
̸= (ξ)c̃k(ξ1)ξ

k−1
2 , and estimate it,

∥∥A−1
̸= (ξ)c̃k(ξ1)ξ

k−1
2

∥∥2
S
=

∫
R2

∣∣A−1
̸= (ξ)

∣∣2∣∣c̃k(ξ1)∣∣2|ξ2|2(k−1)
(
1 + |ξ1|

)2s1(
1 + |ξ2|

)2s2
dξ

≤ const

+∞∫
−∞

∣∣c̃k(ξ1)∣∣2(1 + |ξ1|
)2(s1−κ1)

dξ1

+∞∫
−∞

(
1 + |ξ2|

)2(s2−κ2+k−1)
dξ2.

The integral
+∞∫

−∞

(
1 + |ξ2|

)2(s2−κ2+k−1)
dξ2

is convergent under the condition 2(s2−κ2+k−1) < −1, or −n2−ε2+k < 1/2. The last inequality
holds for k = 1, . . . , n2. Thus, if c̃k ∈ H̃−n1−ε1(R), then we obtain the representation

ũ(ξ) = A−1
̸= (ξ)

(
n2∑
k=1

c̃k(ξ1)ξ
k−1
2 +

n1∑
k=1

d̃k(ξ2)ξ
k−1
1

)

and the following estimate for the solution:

∥u∥S ≤ const

(
n2∑
k=1

[ck]−n1−δ1 +

n1∑
k=1

[ dk]−n2−δ2

)
;

here and in the following, [ · ]s stands for the usual Hs-norm on the line.
Thus, the following assertion holds.
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Theorem 3. Let C be the first quadrant in the plane, and let the symbol Ã(ξ) admit wave
factorization with an index κ = (κ1,κ2) such that κj − sj = nj + εj , nj ∈ N, |εj| < 1/2, j = 1, 2.
Then the general solution of Eq. (3) in the space HS(C), S = (s1, s2), has the form

ũ(ξ) = A−1
̸= (ξ)

(
n2∑
k=1

c̃k(ξ1)ξ
k−1
2 +

n1∑
k=1

d̃k(ξ2)ξ
k−1
1

)
.

The following a priori estimate holds:

∥u∥S ≤ const

(
n2∑
k=1

[ck]−n1−δ1 +

n1∑
k=1

[ dk]−n2−δ2

)
.

2.2. Dirichlet and Neumann Boundary Conditions and Integral Equations
Consider one particular case where we can restrict ourselves to the classical Dirichlet and Neu-

mann conditions for determining arbitrary functions appearing in the structure of the general solu-
tion.

Let n1 = 1 and n2 = 2. According to Theorem 3, the general solution of the equation has the
form

ũ(ξ) = A−1
̸= (ξ)

(
c1(ξ1) + c2(ξ1)ξ2 + d1(ξ2)

)
and contains three arbitrary functions c1, c2, and d1, which are to be uniquely determined to obtain
a unique solution. On the sides of the corner, we set the boundary conditions

u|x2=0
= f(x1),

(
−i

∂u

∂x2

)∣∣∣∣
x2=0

= g(x1), u|x1=0 = h(x2). (6)

In terms of Fourier transforms, conditions (6) have the form

+∞∫
−∞

ũ(ξ1, ξ2) dξ2 = f̃(ξ1),

+∞∫
−∞

ξ2ũ(ξ1, ξ2) dξ2 = g̃(ξ1),

+∞∫
−∞

ũ(ξ1, ξ2) dξ1 = h̃(ξ2).

Substituting them into the general solution formula, we obtain the following system of linear integral
equations for the three unknown functions c1, c2, and d1:

a1(ξ1)c1(ξ1) + b1(ξ1)c2(ξ1) +

+∞∫
−∞

A−1
̸= (ξ1, ξ2) d1(ξ2) dξ2 = f̃(ξ1),

b1(ξ1)c1(ξ1) + p1(ξ1)c2(ξ1) +

+∞∫
−∞

ξ2A
−1
̸= (ξ1, ξ2) d1(ξ2) dξ2 = g̃1(ξ1),

+∞∫
−∞

A−1
̸= (ξ1, ξ2)c1(ξ1) dξ1 +

+∞∫
−∞

ξ2A
−1
̸= (ξ1, ξ2)c2(ξ1) dξ1 + p2(ξ2) d1(ξ2) = h̃(ξ2),

(7)
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where we have introduced the notation

a1(ξ1) =

+∞∫
−∞

A−1
̸= (ξ1, ξ2) dξ2, b1(ξ1) =

+∞∫
−∞

ξ2A
−1
̸= (ξ1, ξ2) dξ2,

p1(ξ1) =

+∞∫
−∞

ξ22A
−1
̸= (ξ1, ξ2) dξ2, p2(ξ2) =

+∞∫
−∞

A−1
̸= (ξ1, ξ2) dξ1.

Thus, we have the following assertion.

Theorem 4. Let s1 > 1/2 and s2 > 3/2, and let the symbol Ã(ξ) admit wave factorization with
respect to C with an index κ such that κ1 − s1 = 1 + ε1 , |δ1| < 1/2, κ2 − s2 = 2 + ε2 , |δ2| < 1/2.
Then the boundary value problem (3), (6) is uniquely solvable in the space HS(C) if the system of
integral equations (7) has a unique solution c1 , c2 , d1.

2.3. Integral and Difference Equations

The system of integral equations (7) obtained in the previous section is not simple, and it is
difficult to propose any acceptable method for solving it. However, if we introduce some additional
assumptions about the symbol Ã(ξ), then this system can be reduced to a system of first-order
difference equations. Let us describe this possibility.

Assume that the factor A ̸=(ξ1, ξ2) is a positively homogeneous function of different orders in the
variables ξ1 and ξ2, namely, of order κ1 in the first variable and κ2 in the second one, for all t > 0,
A ̸=(tξ1, tξ2) = tκ1+κ2A ̸=(ξ1, ξ2).

In this case, it is easy to verify the validity of the following homogeneity property.

Lemma 2. The functions a1 , b1 , p1 , and p2 possess the following homogeneity property for
all t > 0:

a1(tξ1) = t1−κ1−κ2a1(ξ1), b1(tξ1) = t2−κ1−κ2b1(ξ1),

p1(tξ1) = t3−κ1−κ2p1(ξ1), p2(tξ2) = t1−κ1−κ2p2(ξ2).

System (7) can be written in the form

c1(ξ1) + r(ξ1)c2(ξ1) +

+∞∫
−∞

K(ξ1, ξ2) d1(ξ2) dξ2 = F̃ (ξ1),

c1(ξ1) + q(ξ1)c2(ξ1) +

+∞∫
−∞

L(ξ1, ξ2) d1(ξ2) dξ2 = G̃(ξ1),

+∞∫
−∞

M(ξ1, ξ2)c1(ξ1) dξ1 + ξ2

+∞∫
−∞

M(ξ1, ξ2)c2(ξ1) dξ1 + d1(ξ2) = H̃(ξ2),

(8)

where we have introduced the notation

b1(ξ1)a
−1
1 (ξ1) = r(ξ1), p1(ξ1)b

−1
1 (ξ1) = q(ξ1), a−1

1 (ξ1)A
−1
̸= (ξ1, ξ2) ≡ K(ξ1, ξ2),

ξ2b
−1
1 (ξ1)A

−1
̸= (ξ1, ξ2) = L(ξ1, ξ2), p−1

2 (ξ2)A
−1
̸= (ξ1, ξ2) = M(ξ1, ξ2), f̃(ξ1)a

−1
1 (ξ1) = F̃ (ξ1),

g̃(ξ1)b
−1
1 (ξ1) = G̃(ξ1), h̃(ξ2)p

−1
2 (ξ2) = H̃(ξ2).

Lemma 3. The functions r and q are positively homogeneous of the first degree, and the ker-
nels K , L, and M are positively homogeneous of degree −1.
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Proof. The assertion about the functions r and q is obvious, and hence they have the form

r(t) =

r1t, t > 0

r2t, t < 0,
q(t) =

q1t, t > 0

q2t, t < 0,

where r1, r2, q1, q2 ∈ C.
Consider, for example, the kernel M(ξ1, ξ2). We verify that

M(tξ1, tξ2) = p−1
2 (tξ2)A

−1
̸= (tξ1, tξ2) = tκ1+κ2−1p2(ξ2)t

−κ1−κ2A−1
̸= (ξ1, ξ2),

as desired. The proof of the lemma is complete.
Further, we write system (8) in the form

c1(ξ1) + r(ξ1)c2(ξ1) +

+∞∫
0

K(ξ1, ξ2) d1(ξ2) dξ2 +

0∫
−∞

K(ξ1, ξ2) d1(ξ2) dξ2 = F̃ (ξ1),

c1(ξ1) + q(ξ1)c2(ξ1) +

+∞∫
0

L(ξ1, ξ2) d1(ξ2) dξ2 +

0∫
−∞

L(ξ1, ξ2) d1(ξ2) dξ2 = G̃(ξ1),

+∞∫
0

M(ξ1, ξ2)c1(ξ1) dξ1 +

0∫
−∞

M(ξ1, ξ2)c1(ξ1) dξ1 + ξ2

+∞∫
0

M(ξ1, ξ2)c2(ξ1) dξ1

+ ξ2

0∫
−∞

M(ξ1, ξ2)c2(ξ1) dξ1 + d1(ξ2) = H̃(ξ2).

Replacing the integration variable in the integrals over the negative half-line by a variable with
the opposite sign, we obtain a new system with integrals over the positive semiaxis,

c1(ξ1) + r(ξ1)c2(ξ1) +

+∞∫
0

K(ξ1, ξ2) d1(ξ2) dξ2 +

+∞∫
0

K(ξ1,−ξ2) d1(−ξ2) dξ2 = F̃ (ξ1),

c1(ξ1) + q(ξ1)c2(ξ1) +

+∞∫
0

L(ξ1, ξ2) d1(ξ2) dξ2 +

+∞∫
0

L(ξ1,−ξ2) d1(−ξ2) dξ2 = G̃(ξ1),

+∞∫
0

M(ξ1, ξ2)c1(ξ1) dξ1 +

+∞∫
0

M(−ξ1, ξ2)c1(−ξ1) dξ1 + ξ2

+∞∫
0

M(ξ1, ξ2)c2(ξ1) dξ1

+ ξ2

+∞∫
0

M(−ξ1, ξ2)c2(−ξ1) dξ1 + d1(ξ2) = H̃(ξ2).

(9)

Now we transform this system by increasing the number of unknowns and making all functions
and kernels appearing in it defined only for positive values of the arguments. Let us introduce the
following notation for ξ1, ξ2 > 0:

c11(ξ1) = c1(ξ1), c12(ξ1) = c1(−ξ1), c21(ξ1) = c2(ξ1), c22(ξ1) = c2(−ξ1),

d11(ξ2) = d1(ξ2), d12(ξ2) = d1(−ξ2), F1(ξ1) = F̃ (ξ1), F2(ξ1) = F̃ (−ξ1),

G1(ξ1) = G̃(ξ1), G2(ξ1) = G̃(−ξ1), H1(ξ2) = H̃(ξ2), H2(ξ2) = H̃(−ξ2).
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Given the kernels K, L, and M , we define new kernels for positive values of the arguments,

K11(ξ1, ξ2) = K(ξ1, ξ2), K12(ξ1, ξ2) = K(ξ1,−ξ2),

K21(ξ1, ξ2) = K(−ξ1, ξ2), K22(ξ1, ξ2) = K(−ξ1,−ξ2);

Lij(ξ1, ξ2) and Mij(ξ1, ξ2), i, j = 1, 2, are defined in a similar way.
System (9) takes the form of a 6× 6 system of linear integral equations on the positive half-line,

c11(ξ1) + r1ξ1c21(ξ1) +

+∞∫
0

K11(ξ1, ξ2) d11(ξ2) dξ2 +

+∞∫
0

K12(ξ1, ξ2) d12(ξ2) dξ2 = F1(ξ1),

c11(ξ1) + q1ξ1c21(ξ1) +

+∞∫
0

L11(ξ1, ξ2) d11(ξ2) dξ2 +

+∞∫
0

L12(ξ1, ξ2) d12(ξ2) dξ2 = G1(ξ1),

+∞∫
0

M11(ξ1, ξ2)c11(ξ1) dξ1 +

+∞∫
0

M21(ξ1, ξ2)c12(ξ1) dξ1 + ξ2

+∞∫
0

M11(ξ1, ξ2)c21(ξ1) dξ1

+ ξ2

+∞∫
0

M21(ξ1, ξ2)c22(ξ1) dξ1 + d11(ξ2) = H1(ξ2),

c12(ξ1) + r2ξ1c22(ξ1) +

+∞∫
0

K21(ξ1, ξ2) d11(ξ2) dξ2 +

+∞∫
0

K22(ξ1, ξ2) d12(ξ2) dξ2 = F2(ξ1),

c12(ξ1) + q2ξ1c22(ξ1) +

+∞∫
0

L21(ξ1, ξ2) d11(ξ2) dξ2 +

+∞∫
0

L22(ξ1, ξ2) d12(ξ2) dξ2 = G2(ξ1),

+∞∫
0

M12(ξ1, ξ2)c11(ξ1) dξ1 +

+∞∫
0

M22(ξ1, ξ2)c12(ξ1) dξ1 + ξ2

+∞∫
0

M12(ξ1, ξ2)c21(ξ1) dξ1

+ ξ2

+∞∫
0

M22(ξ1, ξ2)c22(ξ1) dξ1 + d12(ξ2) = H2(ξ2).

We apply the Mellin transform [25]

f̂(λ) =

+∞∫
0

f(t)tλ−1dt, λ = s+ iσ,

to this system and, as a result, taking into account the properties

t̂f(t)(λ) = f̂(λ+ 1)

of the Mellin transform, we obtain the system of first-order difference equations

ĉ11(λ) + r1ĉ21(λ+ 1) + K̂11(λ) d̂11(λ) + K̂12(λ) d̂12(λ) = F̂1(λ),

ĉ12(λ) + r2ĉ22(λ+ 1) + K̂21(λ) d̂11(λ) + K̂22(λ) d̂12(λ) = F̂2(λ),

ĉ11(λ) + q1ĉ21(λ+ 1) + L̂11(λ) d̂11(λ) + L̂12(λ) d̂12(λ) = Ĝ1(λ),

ĉ12(λ) + q2ĉ22(λ+ 1) + L̂21(λ) d̂11(λ) + L̂22(λ) d̂12(λ) = Ĝ1(λ),
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M̂11(λ)ĉ11(λ) + M̂21(λ)ĉ12(λ) + M̂11(λ+ 1)ĉ21(λ+ 1)

+ M̂21(λ+ 1)ĉ22(λ+ 1) + d̂11(λ) = Ĥ1(λ),

M̂12(λ)ĉ11(λ) + M̂22(λ)ĉ12(λ) + M̂12(λ+ 1)ĉ21(λ+ 1)

+ M̂22(λ+ 1)ĉ22(λ+ 1) + d̂12(λ) = Ĥ2(λ),

(10)

where K̂ij(λ) and L̂ij(λ) are the Mellin transforms of the functions Kij(t, 1) and Lij(t, 1) and
the M̂ij(λ) are the Mellin transforms of the functions Mij(1, t), i, j = 1, 2.

Thus, the following assertion holds.

Theorem 5. If the function possesses the property of generalized positive homogeneity, i.e.,

A ̸=(tξ1, tξ2) = tκ1+κ2A ̸=(ξ1, ξ2)

for all t > 0, then the system of integral equations (7) can be reduced to the 6×6 system of first-order
difference equations (10).

CONCLUSIONS

The simplest version of the boundary value problem in the Sobolev–Slobodetsky space with
different smoothness in different variables is described. Unfortunately, the formula for the general
solution in the multidimensional case is too cumbersome to write down and study the general
boundary value problem, but in some cases meaningful results can be obtained. The authors intend
to continue work in this direction.
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