IEEE Access

Multidisciphinary  Rapd Roview § Dpen Accoss loumal

Received 18 May 2023, accepted 4 June 2023, date of publication 8 June 2023, date of current version 21 June 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3284030

== RESEARCH ARTICLE

Machine Learning Methods Based on Geophysical
Monitoring Data in Low Time Delay Mode
for Drilling Optimization

ALEXEY OSIPOV"!, EKATERINA PLESHAKOVA'-2, ARTEM BYKOV" "3, OLEG KUZICHKIN®,
DMITRY SURZHIK 5, STANISLAV SUVOROV ¢, AND SERGEY GATAULLIN "

"Moscow Technical University of Communications and Informatics, 111024 Moscow, Russia

2MIREA - Russian Technological University, 119454 Moscow, Russia

3Department of Data Analysis and Machine Learning, Financial University under the Government of the Russian Federation, 125167 Moscow, Russia
“Department of Informational and Robototechnical Systems, Belgorod National Research University, 308015 Belgorod, Russia

5Vladimir State University named after Alexander and Nikolay Stoletovs, 600000 Vladimir, Russia

SDepartment of Applied Informatics, Moscow Polytechnic University, 107023 Moscow, Russia

Corresponding author: Ekaterina Pleshakova (e.s.pleshakova@mtuci.ru)

The work of Dmitry Surzhik was supported by the Intelligent System for Monitoring the Integrity of the Subgrade of the Railway through
the Section II “Materials and Methods” under Grant (RFBR) 23-29-10126.

ABSTRACT The purpose of the article is to create an effective method to monitor the state of the drill
string and the bit without interfering with the drilling process itself in low-time delay mode. For continuous
monitoring of the well drilling process, an experimental setup was developed that operates on the basis of
the use of the phase-metric method of control. Any movement of the bit causes a change in the electrical
characteristics of the probing signal. To obtain a stable signal from a bit immersion depth of up to 250 m,
a frequency of probing electrical signals of 166 Hz and an amplitude of up to 500 V were used; sampling
rate (analog-to-digital converter) ADC - 10101 Hz. To identify the state of the drill string and the bit
according to the graphs of dependences of changes in the electrical characteristics of the probing signal
on time, the authors of the article investigated a number of deep learning methods, based on the results of
the research, a line of capsule neural network (CapsNet) methods was selected. The authors have developed
two modifications of 1D-CapsNet and Windowed Fourier Transform (WFT) - 2D-CapsNet. To identify the
transition between two rock layers with different properties, WFT-2D-CapsNet showed an accuracy of 99%,
which is 2-3% higher than the results of modern rock studies based on measurement-while-drilling (MWD)
and logging-while-drilling (LWD) methods. The WFT-2D-CapsNet method unambiguously detects self-
oscillations in the drill string and detects the good condition of the bit with an accuracy of 99%.

INDEX TERMS Robotics, artificial intelligence, neural networks, engineering, CapsNet, geophysical
monitoring, drilling optimization.

I. INTRODUCTION

The problem of providing the population with clean fresh
water has long been a key problem of mankind. For areas
remote from waterways, drilling artesian wells is a solu-
tion to this problem. Aquifers can be at different depths,
and to get to them, drilling rigs should be used. This is
expensive equipment that is subject to heavy loads and often
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fails. In 2015-2019, according to statistics, the number of
the accidents due to the wear of bits is more than 65%
of the total number of all [1] Real-time monitoring of the
wear of the bit and timely replacement of bits is important
to reduce the frequency of equipment failures. Based on
condition-based maintenance (CBM), bit wear can be moni-
tored with real-time condition monitoring signals and wear
related. And the quality and efficiency of the design can
be significantly improved by replacing the bit to the wear
threshold [1].
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A. PROBLEMS OF EFFICIENT DRILLING

The problem of drilling efficiency at the transition between
two layers of rock with different mechanical properties is
discussed in the article by Aribovo et al. [2]. The authors
emphasised that the rapid oscillation changes caused by such
transitions can damage the bit or significantly affect drilling
performance. The authors created a model that allowed them
to derive an expression for drilling efficiency for the tran-
sition phase. A number of examples given by the authors
showed that drilling efficiency is nonlinearly dependent on
bit engagement between two rock layers.

The occurrence of self-oscillations in rotary drilling sys-
tems leads to a decrease in drilling productivity. The occur-
rence of self-excited vibrations leads to failure of the bits.
The authors of [3] point out that failure of equipment and the
increase, in connection with this, the downtime of the drill
string range from 2 to 10% of the cost of the well. Because
fixed cutter bits (also known as PDC bits) are particularly sus-
ceptible to self-exciting vibrations, drilling systems that use
these bits. The authors established the relationship between
the load on the bit and the stability of the torsion dynamics [4].
Damping of self-oscillations in drill strings with rotating bits
is the focus of many studies aimed at revealing the mecha-
nisms of self-excitation [5], [6], [7].

Inspired by this publication, we set ourselves the task of
finding methods to prevent damage to the drill string and the
bit.

Published studies of sticking and sliding attribute vibra-
tions to static friction effects resulting from the interaction
between the rock and the bit [8], [9], [10]. Vibrations caused
by bit-to-rock contact cause strong torsional and axial vibra-
tions in the drill string. Sticking oscillations are considered in
the study by modeling the drill string as a torsional pendulum,
and the interaction between the bit and the rock is considered
as Coulomb friction. [11], [12], [13], [14], [15]. Initially, the
main attention in the works was paid to longitudinal vibra-
tions of the drilling structure, although later the influence of
torsional vibrations of the drill string was considered [16].
Torsional vibrations can cause drill string fatigue and can be
strong enough to damage the bit.

The authors of [17] and [18] analyze self-excited axial
and torsional vibrations of rotary drilling systems using a
model that combines the representation of a drilling structure
with several degrees of freedom and a speed-independent
law of interaction between the bit and rock. The authors
found that axial vibrations propagating along the drill string
appear as traveling waves, while torsional vibrations take the
form of standing waves, the frequency of which coincides
with the torsional resonance of the drill string, excited by
the interaction of the bit with the rock. The authors of [19]
described an active damping system that significantly reduces
the threshold value through the use of feedback control, thus
expanding the operating range for vibration-free rotation.

Extending the life of PDC bits without compromising their
performance is essential in well drilling. The PDC cutter
is the main cutting element of a polycrystalline diamond
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FIGURE 1. Seismic profile.

(PDC) bit [20]. During the drilling process, the PDC cutter is
subjected to twisting of the drill cord and rock abrasion under
high pressure and strong impact [21], [22]. Changes in the
value of cutting forces and torque on the bit lead to torsional
vibrations [23], [24] of the drill string. Torsional vibrations
lead to the development of longitudinal vibrations. According
to the results of the analysis of bit cutters, failures are mainly
associated with polycrystalline wear, abrasive wear and cutter
failure [25], [26]. The most common wear mechanism for
PDC bits in rock drilling is abrasion. Impact resistance is one
of the important indicators of the performance and quality of
a PDC cutting tooth [27], [28]. Various new designs of PDC
bits are created for specific geological conditions, increasing
their efficiency and fault tolerance [29], [30].

B. GEOPHYSICAL RESEARCH METHODS

Geophysical methods can be divided into four main groups:
potential methods; electrical and electromagnetic (EM) meth-
ods, and seismic methods, radiometric methods. Each method
has a specific scope, depending on the physical properties and
purpose. [31], [32].

Most geophysical methods have been developed for the
oil and gas industry. These methods have been developed
for various hydrocarbon detection approaches; these methods
may not always be transferable from oil and gas to water. Each
method has a specific application, depending on the physical
properties of the target and how accurately these properties
can be detected using available technologies.

Seismic reflection techniques are the most popular meth-
ods for mineral exploration and mine planning [31], [33],
[34], [35]. Seismic waves generated by a vibrating controlled
source are one of the main methods of underground research
in geophysics.

Based on records of seismic waves, it is possible to recon-
struct subsurface geology in detail. Seismic data can be used
to estimate the depth of an aquifer and confirm its presence.
These data are also used for design planning.

The traditional method is to transmit electromagnetic
pulses with a given fundamental frequency into the surround-
ing rock. These signals are reflected in places of material
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changes, inhomogeneities, or discontinuities. In accordance
with the reflection from the inhomogeneity, the signal is
returned to the measuring system and recorded and stored
digitally for further analysis.

The growing demand for minerals requires the search for
new deposits, often at deeper levels, and the improvement
of existing methods. The 3D seismic method is widely used
in oil exploration [36]. Methods for monitoring elastic wave
parameters of geotechnical materials include elastic wave
tomography and seismic reflection. Trung et al. proposed a
three-dimensional (3D) elastic full-wave inversion tomogra-
phy method to determine the geotechnical characteristics of a
material [37]. Oudphui et al. used 3D seismic data to search
for undiscovered mineral deposits [38]. Place et al. improved
hard rock image fidelity with a controlled source of seismic
noise and identified undeveloped reservoirs and faults [39].

C. ORGANISATION OF CONTROL OF THE DRILLING
PROCESS

Vector measuring systems are highly efficient [40], [41], [42]
and can be used to detect and locate geodynamic processes.
This control method has a high noise immunity and sensitivity
compared to fixing the amplitude parameters of the anoma-
lous components of the electromagnetic field. In this case, the
object of control is the technological equipment, the well and
the surrounding soil.

The papers [43], [44] explain the application of the phase-
metric method of geoelectric control, namely the use of
several sources of probing signals located in the immediate
vicinity of the object under study, and the required number of
vector sensors for measuring the electric field. In this case,
the registration of phase characteristics at a fixed position
of the source and measuring base, with the possibility of
controlling the parameters of the probing signals, is based
on the fact that the primary and secondary electric fields are
vector quantities.

In accordance with the foregoing, it can be concluded that
it is possible to organize a drilling process control system in
order to prevent processes that lead to damage to the drill
string and the bit. At the same time, it is possible to improve
the detection accuracy of aquifers according to the different
physical and chemical characteristics of the soil.

The method of controlling the phase metric as a probing
signal uses several sources located near the object under
study, and the required number of vector measuring sensors
of the electric field. The analysis of changes in the phase
characteristics of the transfer function [45] has a number
of significant advantages over the amplitude methods for
fixing the parameters of the anomalous components of the
electromagnetic field, in particular, it is characterized by
increased sensitivity and noise immunity [46], and allows
solving the problems of detecting and localizing geodynamic
processes in geological media [47], [48].

The papers [49], [50], [51] explain the application of
a modification of this phase-metric method in geoelectric
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control. In this case, the registration of phase characteristics
at a fixed position of the source and measuring base, with
the possibility of controlling the parameters of the probing
signals, is based on the fact that the primary and secondary
electric fields are vector quantities.

D. DATA PROCESSING MODELS

1) GENERATIVE ADVERSARIAL NETWORKS (GANs)

One of the main functions of the GAN is to increase the
amount of data that is further used to train an intelligent
classification system [52], [53]. A data augmentation strategy
based on machine learning algorithms is of particular impor-
tance to us. Experiments on drilling rigs are quite expen-
sive. It is impossible to deliberately trigger processes that
lead to the destruction of aggregates in an amount sufficient
for adequate training of the neural network. However, the
traditional GAN [54], [55] has several drawbacks such as
mode collapse, gradient disappearance, etc., which reduces
the quality of generated samples. Based on this, in order to
eliminate shortcomings in the GAN, in a number of works
its improved model is proposed [56], [57]. Consider the most
promising GAN modifications for solving our problem.

Linetal., in general. [58] proposed an improved multiscale
residual GAN (MsR-GAN) model to obtain fakehigh-quality
samples in addition to the experimental results of studies on
the performance of failed bearings. The authors have devel-
oped a hybrid loss function that improves the classification
efficiency of unbalanced failures.

Gao et al. [56] used the ASM1D-GAN method, con-
sisting of a one-dimensional convolutional neural network
(1D-CNN), GAN and a fault classifier, to diagnose faults in
industrial equipment.

Bo et al. proposed an intelligent diagnostic method based
on a generative adversarial network (GAN). A personal-
ized intelligent diagnostic model was created for individual
machines. The results showed that this method does not
require real fault patterns and provides high diagnostic accu-
racy. [57].

In [62], [63], [64], and [65], the authors proposed a method
for diagnosing faults in rolling bearings based on an improved
GAN. As a basis, they used a vibrational signal combined
with a continuous wavelet transform capability for non-
stationary signal processing and a semi-stationary generation
adversarial network (SSGAN) including an image processing
and recognition function. The results showed that the fault
diagnosis method, combined with the continuous wavelet
transform and improved GAN, can provide a higher accuracy
than other mainstream diagnostic methods.

2) CAPSULAR CONVOLUTIONAL NEURAL NETWORKS

Capsule networks (CapsNet) proposed by Sabur et al. [61]
have had a significant impact on the field of deep learn-
ing. Unlike conventional convolutional networks (CNNS),
capsule networks maintain orientation relationships between
objects. We are primarily interested in the order of the objects,
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which does not allow us to use conventional CNNS. The
original capsule network model was first applied to images by
Hinton, G. E. et al. [67] and this model is our base. However,
taking into account the specifics of the problem, its direct use
needs improvement.

For automatic recognition of heart diseases by ECG, a one-
dimensional network of deep capsules 1D-CADCapsNet was
developed [68]. The authors of the work adapted the basic
model for processing one-dimensional ECG signals. In addi-
tion, the model was supplemented with additional layers.
An extremely high accuracy of up to 99.44% has been
achieved.

Lalonde proposed the SegCaps network for image seg-
mentation, which is a convolutional deconvolutional cap-
sule network for the problem of object segmentation. They
extended the idea of convolutional capsules to locally con-
nected routing and proposed the concept of deconvolutional
capsules. [69].

Biswal [70] modified the network, they describe a version
of capsules in which each capsule has a logistic unit to
represent the presence of an object and a 4 x 4 matrix that can
learn to represent the relationship between that object and the
viewer. The authors integrate internal skip connections and
a deconvolutional capsular block into a deep M-CapsNet to
transform information from every other child into the corre-
sponding parent capsule at every step for efficient semantic
segmentation.

E. MAIN CONCLUSIONS INTRODUCTION

1. The transition of the bit between rocks with different prop-
erties and the occurrence of self-oscillations in the drill string
can lead to damage or even failure of the entire drilling rig.

2. Due to the wear of the bits, 65% of the total num-
ber of accidents occur. Equipment failure and increase,
in connection with this, downtime of the drilling rig range
from 2 to 10% of the cost of the well.

3. Currently used methods that allow real-time determina-
tion of the transition of the bit between different rocks with
different properties have an accuracy of 70-96%.

4. The phase-metric method has a number of significant
advantages over the amplitude methods for fixing the param-
eters of the anomalous components of the electromagnetic
field, in particular, it is characterised by increased sensitiv-
ity and noise immunity. Its use together with CapsNet has
good prospects for realizing trouble-free operation of the drill
string and the bit.

Il. MATERIALS AND METHODS

A. DRILLING RIG

We used an Atlas Copco water well drilling rig model T3W.

PDC bits and tricone bits were used for drilling (tricone bit),

which is universal for rocks of various hardness. This unit

allows you to make wells up to 450 meters deep. Average

weight in bit 100 €N, angular speed from 20 to 120 rpm.
Phase-metric method of geoelectric control
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FIGURE 2. Sensor layout.

The geological section can be represented as a dynamic
link H(p, Au), in which the probing electrical signal is
converted X(p, Au), specified in the operator form into a
registered electrical signal Y(p, Au) in the operator form. For
this reason, you can get:

Y (p. Au) oy B[y (p, A
|X(p, Auyelex 20 X (p, Auw)

H (p, Au) = Ag(p.Au)

ey

where ¢ - signal phase, p — Laplace operator, Au — strain ten-
sor characterizing the compression and change in the shape
of a soil unit. Ap(p, Au)- phase difference of the probing and
recorded signals:

Ag (p, Au) = ¢y (p, Au) — ¢x (p, Au).

Accordingly, by changing the phase difference of the sig-
nals, one can judge about changes in the electrical char-
acteristics of the controlled medium through which the
bit passes, and, therefore, that the bit passes through the
boundary between underground rocks with different physical
properties.

It follows from the expression obtained that soil control
during drilling can be carried out by tracking both the module
and the argument (phase) of the recorded geoelectric signals
(since the parameters of the sounding signals are constant and
known).

In the simplest case, two point sources A, B and one
measuring sensor O, located along the line AB and at equal
distances from the sources, can be used. Point sources A and
B form probing signals shifted in phase by /2 relative to each
other (Figure 2).

Each of the point sources generates an electric field signal
at the point O of the following form:

Eax = E-ax + AEax, — Epx = E 'px + AEpx, (2)

where )_E)O - electrical signal recorded before the bit plunged
into the ground; AE - anomalous component of the electric
field caused by the presence of a bit in the soil, causing a
change in the electrical characteristics of the soil.

Moreover, the electrodes can be located not only along the
line, but also be distributed on the plane. In the latter case,
we have the opportunity to track the immersion of the bit in
a three-dimensional space, and the accuracy of determining
the characteristics of underground rocks increases [3]. The
registration of phase characteristics at a fixed position of
the source and the measuring basis, with the possibility of
controlling the parameters of the probing signals, is based
on the fact that the primary and secondary electric fields are
vector quantities [4].
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The phasometric geoelectric method has increased accu-
racy and sensitivity to changes in the state of the object
under control, which is unattainable using standard ampli-
tude methods (for example, logging while drilling or various
modifications of the resistivity method). This is achieved
through the initial installation and positioning of radiating
and receiving point grounds, the use of original algorithms
and methods for generating probing signals to create a multi-
phase physical field of the desired structure in the controlled
area, recording measuring signals, as well as processing and
interpreting the information contained in them. Also, among
the advantages of the method in relation to the problem
being solved, it should be noted its large range and depth,
achieved, in particular, due to the use of the low-frequency
range, as well as the fact that this method belongs to the class
of non-destructive testing methods and does not require the
system to be placed directly on the elements and drilling rig
structures. However, among the limitations of this method,
one should single out the need to solve the problems of
identifying extremely small geodynamic changes in the near-
surface zones of the geological environment and the initial
signs of the development of geotechnical processes. In this
aspect, it becomes relevant to solve the problem of increasing
the noise immunity of such systems from the influence of
interference of natural and artificial origin, as well as increas-
ing the spectral purity of the synthesized signals. To solve this
problem, in the future it is proposed to use modulated signals
with the expansion of their spectrum as probing signals,
as well as to provide hardware approaches to compensating
or attenuating the distortions of the generated signals.

B. DESCRIPTION OF THE EXPERIMENT

To assess the possibility of using the phase-metric method in
the problems of soil monitoring during well drilling, a full-
scale study of the process of the bit passing through under-
ground rocks with different electrical characteristics during
drilling of wells in water was carried out. For this, an experi-
mental setup was created (Figure 3), which sources of probing
signals, devices for measuring and recording signals in the
environment, and a device for includes: processing geody-
namic data.

Figures 4 and 5 show the scheme for organizing a full-scale
experiment. Electrodes A and B are for input signals with a
phase difference of 900 electrodes, MIM2M3N1N2N3 are
for output resulting signals.

When using multipole systems of geodynamic control at
registration points (M1-M4, N1-N4), one deals with an ellip-
tically polarized geoelectric field. In this case, vector sensors
to measure the electric field with the same indices form pairs,
the signals of each of which are sent to the measuring system
for processing. Data processing of recorded geoelectric sig-
nals involves the formation of their difference signal (to filter
common-mode noise), its amplification, detection relative to
the reference signal, and low-frequency filtering. The princi-
ple of registering the phase structure of the geoelectric field
at an arbitrary receiving point is illustrated in [3].
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FIGURE 3. Laboratory equipment.

FIGURE 4. Scheme of the organization of the experiment.

Matal muger

FIGURE 5. Location of electrodes, top view.

As emitting and receiving electrodes, with the help of an
artificial electric field was created and recorded, brass rods
1 m long and driven into the ground were used. The frequency
of the probing electrical signals was 166 Hz, the amplitude
was 500 V, and the shape was harmonic. Digital generation
and signal processing were carried out using the E-502-P-
EU-D multifunctional ADC/DAC module, which is a data
acquisition system based on USB and Ethernet interfaces
(Figure 6). The registration of changes in the electric field was
carried out with an ADC sampling frequency of 10101 Hz.

To control the seismic background during the measure-
ments, a network of several highly sensitive digital short-
period seismometers ZET 7156 (Figure7) was used, designed
to measure the values of vibration velocity, allowing instant
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FIGURE 6. Appearance of the multifunctional ADC/DAC module
E-502-P-EU-D.

FIGURE 7. Appearance of the seismometer ZET 7156.

measurement of vibration velocity in three spatial coordinates
X, Y, 2).

To assess the possibility of using the phase-metric method
in the problems of soil monitoring during well drilling,
a full-scale study of the process of the bit passing through
underground rocks with different electrical characteristics
during drilling of wells in water was carried out. For this,
an experimental setup (Figure 1) was created, which includes:
sources of probing signals, devices for measuring and record-
ing signals in the environment, and a device for processing
geodynamic data.

In this case, the following parameters of the experi-
mental setup were used: the distance between the emitting
electrodes - 800 m; the distance between receiving elec-
trodes MIN1 — 700 m, the distance between receiving elec-
trodes M2N2 — 600 m, the distance between the receiving
electrodes M3N3 — 500 m, the distance between the receiving
electrodes M4N4 — 400 m, frequency of probing harmonic
electrical signals - 166 Hz, amplitudes of probing harmonic
electrical signals — 500V; ADC sampling rate — 10101 Hz.

During the research, a 250 m well was drilled. During
drilling, changes in the phase characteristics of electrical
signals were recorded (Figure 8).

C. DATA PROCESSING TOOLS
The Python 3.9.13 and PyTorch 1.13.1 libraries were used
to develop the algorithm. The experimental platform was
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FIGURE 9. Types of graphs of changes in the phase characteristics of
electrical signals.

configured with an Intel Core 17-9700K processor, GeForce
RTX 2070 GPU, and 64GB of RAM.

D. SIGNAL PREPROCESSING

The change in the phase characteristics of the signals provides
information on the depth of drilling and the electrical char-
acteristics of the layers of underground rocks in which the
bit is immersed, which makes it possible to judge the degree
of moisture saturation of the underground rocks. When the
bit moves in a homogeneous medium with constant moisture
saturation and with a constant linear speed, the graph of the
dependence of the phase transition on time will be linear.
Changing the moisture content and characteristics of under-
ground rocks leads to a change in the shape of the graph. The
idea of the method is to determine the processes currently
taking place at the interface between the bit and underground
rock according to the type of graph (Figure 8).

In Figure 9 a) shows the transition of the bit from one
rock formation to another. The graph shows the process of
a smooth transition from one linear relationship to another.

In Figure 9 b) transition of the bit from one rock formation
to another with a change in the mode of rotation of the bit.

In Figure 9 c) the movement of the bit into a layer with a
denser inclusion.
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FIGURE 10. Development of self-oscillations of the drill string.

In Figure 9 d) the movement of the bit in a layer with a less
dense inclusion. It could be a bit hitting a cavity.

Figure 9 a") shows the second derivatives of the functional
dependencies shown in Figure 9 a). All oscillations occur near
the zero axis, which makes it possible to abstract from the
uniform movement of the bit inside a homogeneous layer and
highlight transient processes. The resulting graphs are more
suitable for further processing using a convolutional neural
network.

In Figure 9 b') the transition of the bit from one rock
formation to another with a change in the mode of rotation
of the bit. Two characteristic peaks are observed.

In figure 9 ¢’), when the bit moves into a layer with a denser
inclusion, in contrast to the graph in Figure 9a’) the maximum
passes sharply into a minimum.

In Figure 9 d) the movement of the bit in a layer with a
less dense inclusion. this graph is similar to the previous one.
The difference is that the local minimum comes first.

Self-oscillations can randomly occur in the drill string.
Often this process is started due to a damaged bit, but in the
case of an undamaged bit, the process can take place. This
can lead to rig failure and it is important to stop this process
as soon as possible [2].

In Figure10. shows how the resulting self-oscillations look
on the graph of the change in the phase characteristics of
electrical signals (Figure 10.1) and the second derivative
of it (Figure 10.2). Drilling was carried out to a depth of
140 meters using a 3-blade PDC bit. Self-oscillations often
occur in a drill string using these types of bits [2].

The graph clearly shows the emerging periodicity of the
ongoing process. A stable drilling process, represented by
small fluctuations along a certain line, turns into an oscil-
latory process, reaching a maximum amplitude in a short
period of time. In the figure, this process is developed in
just 8 seconds. The last two seconds are already formed
self-oscillation. Moreover, a change in the amplitude of self-
oscillations in the future may indicate the inhomogeneity of
the material inside which drilling is carried out, or damage to
the bit itself.

E. CONVERTING GRAPHS TO 2D VIEW

In order to use 2D-CapsNet for the analysis of phasometric
data, the authors of the article made a number of transforma-
tions (Figure 11). According to the second derivative of the
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functional dependence (Figure 11.a) of the phase-metric sig-
nal, 32 frequency spectrum graphs were built (Figure 11.b).
The scipy.fftpack python library was used to create them.
The signal was split into 32 windows with 80% overlap.
All abscissas of the frequency spectra are converted to the
interval from O to 1 by the linspace command of the Python
Numpy library. A heat map was built according to the fre-
quency spectrum graphs. Each graph is a column in the image
(Figure 11.c).

F. GENERATIVE ADVERSARIAL NETWORKS

To stop the oscillatory process in the drill string, it is nec-
essary to change the mode of operation. The problem with
tracking fluctuations is that this process happens randomly
and it is difficult to collect the necessary amount of data
to train the neural network. To obtain a set of data of the
required volumes, a significant amount of time is required
to monitor the operation of the drill string. To increase the
training dataset, the authors used a GAN (Figure 12).

The GAN architecture consists of a generator and a dis-
criminator configured to work against each other.

In each GAN training cycle, a noise variable z occurs
randomly [67]. On this basis, signals G(z) are synthesized.
After receiving information about the generated signals and
raw some detected samples x, the neural network D evaluates
the probability that the input data is real samples. Also, G is
going to generate fake data that can deceive D as much as pos-
sible and obtain a confidential connection. Both models are
updated to start the next cycle. This process can be described
by the GAN loss function formula (3)

mén max Ex~p,, [logD (x)] + E;~p,[log(1 — D(G(2)))]
3)
where Py, and Py - the distribution of the real sample over x
and the prior distribution of the noise variable z, respectively.
The task of the training generator is to minimize the second
term of formula (3), and the discriminator is to maximize

the objective function in order to obtain the maximum log-
likelihood by optimizing between the synthesized sample and
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TABLE 1. Layers of the GAN generator model.

TABLE 2. Layers of the discriminator GAN model.

N Layer Filter x Kernel Other Params Output Size Layer Filter x Other Output
Name Size Name Kernel Size Params Size
1 | Z - - 100 1 Input Layer | - - 32x32x3
2 | Deconv 512x3x3 strides = 2 4x4x512 2 Conv2D 32x3x3 strides = 1 32x32x32
act = PReLU 3 MaxPool 64 x3x3 strides =2 15x15%64
3 | Deconv 256 x3x3 strides =2 8 x 8§ x 256 4 Conv2D 64 x1x1 strides = 1 15x15%64
act = PReLU 5 Conv2D 96 x3x3 strides = 1 13x13x96
4 | Deconv 128 x3 %3 strides =2 16x16x128 6 MaxPool 64 x3x3 strides = 1 11x11x192
act = PReLU 7 BN - - 11x11x192
5 | Deconv 64 x3x3 strides =2 32x32%64 8 Reduction R - 5% 5x%x576
act = PReLU module
6 | Deconv 3x3x3 strides =1 32x32x3 9 DropOut - - 5%x5x%x576
act = PReLU 10 | FC layer - - 14400
11 | FC layer - - 1
- - - - 12 | OutPut - - 1
=l |z 'z |z [ (o )| El B =[B= B Bl 5| = B 8 B B (o
7| =) 8|=)| §|=) § =) § = OutPut ‘“‘”“‘E‘édédéﬁ‘éggmigg B D
o} o} o} 9] = |8
[a)] (a] (=] (a)
1x1 Conv |—>{3x3 conv | 3x3 Conv

FIGURE 13. Block representation of the GAN generator network model.

real data. After adversarial training, the generated samples G
fully correspond to the distribution of real samples (Pg, = Py).

As shown in Figure 13, the input of G is a 100D random
noise z subject to Gaussian distribution, with the mean value
of 0 and a standard deviation of 1. Firstly, z is projected
and reshaped into 4 x 4 x 512 size feature maps. Then,
these feature maps are transformed into Conv representations
by 4 deconvolutional (Deconv) blocks (Table 1). Each block
includes a Deconv layer with 3 x 3 kernel size, a batch nor-
malization (BN) layer used to accelerate model training and
improve its generalization ability, and a PReLU activation
layer.

if
PReLU(x) = | 1T X >0 @
o;x,if x <0

where i represents the index of channel, and «; is a learnable
parameter. We use the channel-shared version of PReLU.
Here, channel-share means the coefficient is shared by all
channels of one layer. The initial value of «; is assigned
with a value of 0.25. The values of bk are updated by back
propagation and optimized simultaneously in all layers [71].

Input D receives an image of 32 x 32 x 3 image
(Figure 14). The image passes through three convolutional
layers and two MaxPool layers, the parameters of which are
shown in Table 2. Then comes the layer batch normalization
(BN) layer used to accelerate model training and improve its
generalization ability. The reduction module is mainly used
for further dimension reduction. The following is a dropout
layer to prevent the model from overfitting. Finally, two
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FIGURE 14. Block representation of the Discriminator GAN network
model.
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FIGURE 15. Dynamic routing algorithm in CapsNet.

fully connected (FC) layers are used to output the predicted
probabilities.

When training GAN, the following hyperparameters are
used: Batch size - 64; Epochs - 150; Learning rate - 0.0001;
Optimizer - Adam optimizer.

G. CAPSULE NETWORK
The essence of the CapsNet algorithm is to convert neurons
from a scalar to a vector. This is necessary to reduce informa-
tion loss and improve the ability to extract features.
We use the non-linear squashing function given by
Isil® s
y=— ®)
1 sl s
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FIGURE 16. Block representation of the 1D-CapsNet network model for
automatic determination of the nature of changes in drilling conditions.

where vj is the vector output of capsule j and S; is its input.
The final output vector vj is obtained by a nonlinear mapping
of §;

The output vector S; is the weighted sum of uj;

8j = Z Cijujji, (6)
i

where Cj; is the coupling coefficients determined by the
dynamic routing algorithm. These coefficients represent a
probability distribution for the low-level capsule output to
which they are sent to high-level capsules.
u = Wiui, )
Jli
where u; is the i-th neuron in the upper layer, Wj; is the weight
matrix, uj}; is the prediction vector:

exp (by)
i = (3)
2 exp (bix)
k
bij = byj + vjuji, ®)

where the is j denotes the j-th output neuron. Cj; is by are
determined by the dynamic routing algorithm.

For classification, we used a capsule network (CapsNet).
A signal is applied to the input of the network, and abstract
representations are created at the output. Unlike Convolu-
tional Neural Networks (CNNs), Capsule Networks store
object parameters such as the object’s orientational (rota-
tional and translational) relationships.

H. 1D-CapsNet
In this article, a one-dimensional model of the 1D-CapsNet
capsule network was developed for automatic recognition of
processes occurring during drilling and monitoring using the
phase-metric method. The original capsule network model is
shown in the figure. (Figure 16)

The ReLU activation function is defined as follows:

ReLU(x) = [X ifx >0 (10)
0,if x <0

When training 1D-CapsNet, the following hyperparame-

ters are used: Batch size - 128;
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TABLE 3. Layers of the 1D-CapsNet model and various layer parameters
(for a group of segments 51.4 s).

N | Layer Name Filter Dim x | Other Output
X Num Params Size
Kernel | (capsu
Size les)

1 Input Layer - - - 514x1

2 | ConvlD 32x5 | - strides =2 255 x

act =ReLU 32
3 | ConvlD 64 %3 strides = 1 253 x

act=ReLU 64
strides =2 126 x

4 | Primary Caps 512 % 16 x

(ConvlD) 3 32 512

5 | Primary Caps 4032
(Reshape) x 16

6 | Primary Caps 4032
(Squash) x 16

7 | Caps 32x2 | num_routing | 2 x 32
(CapsuleLayer) =3

8 | Decoder 514 x

1
9 | CapsNet 2

Epochs - 30; Alpha (reconstruction) - 0.2; Number of
routing - 3; Shift fraction - 0.1; Optimizer - Adam opti-
mizer. The 1D-CapsNet model contains convolutional layers,
a Primary Caps layer, and a Caps layer. The signal from
the experimental setup was fed to the network input, which
was pre-processed according to the ““Signal Pre-Processing”
item. The input layer dimensions were set to 514 x 1, which
covered a time range of 51.4 seconds in 0.1 second increments
(Table 3). The input signals were passed through two layers
of one-dimensional convolution (Conv1D) with the param-
eters shown in Table 3. large, this means that the capsules
have found the important features they are looking for in the
Primary Caps block. The reshaping layer, which was located
after the convolutional layer, was used to transform the array
of feature maps into the corresponding vectors. Then, in the
last step of the Primary Caps layer, the squash function was
used to ensure that the lengths of all vectors were between
0 and 1. The squash function for vector S was defined by the
formula:

NN
L+ SN2 L+ ISl

the result of the function is a probability that indicates the
presence of waveform features, so it cannot be greater than 1.
The squash function stores detailed information about the
signals during network training. The Caps layer contained
two capsules for determining the transition of the bit through
layers of rock with different properties, which represent the
Normal and Transition classes and have a size of 32. Infor-
mation about a particular object is stored in the activation
vector dimension. This allows CapsNet to demonstrate high
performance. In this part of the network, a dynamic routing
algorithm was implemented.

Capsule stand to predict the yield of capsules in the next
layer. The capsules prediction output generated a cluster of
prediction vectors.

Squash(S) = (11
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FIGURE 17. Block representation of the 2D-CapsNet network model for
automatic determination of the nature of changes in drilling conditions.

TABLE 4. Layers of the 2D-CapsNet model and various layer parameters
(for a group of segments 51.4 s).

N | Layer Name | Filter x Dim x Num Other Output Size
Kernel Size | (capsules) Params
1 | Input Layer - - - 32x32x3
2 | Conv2D 128x3x3 | - strides =2 | 16x16x128
act=
PReLU
3 | Fusion 16x16x128
feature maps
4 | Reweighted 16x16x128
feature maps
5 | Primary 128 x3 x3 | 15x15x8x16 strides =2 | 15x15x128
Caps
(Conv2D)
6 | DigitCaps 16xn nx16
7 | 2D-CapsNet n

The mean of the prediction vectors was then calculated
to find the distances between the mean vector and the pre-
diction vectors. This process calculates the correspondence
between each predictive vector and the mean vector. The
predicted vector weight has been updated to reflect this dis-
tance measure. Vectors that were far from the mean received
a small update, and predicted vectors that were close to the
mean received large updates. We repeated the routing process
3 times to update the network settings.

I. 2D-CapsNet

In this article, in addition to the one-dimensional model,
a two-dimensional model of the 2D-CapsNet capsule network
was developed for automatic recognition of processes occur-
ring during drilling and monitoring using the phase-metric
method. (Figure 17).

When training 2D-CapsNet, the following hyperparame-
ters are used: Batch size - 50; Epochs - 30; Learning rate -
0.0001; Optimizer - Adam optimizer.

The general structure of the proposed 2D - CapsNet
model is presented in Table 4. After the first Conv2D layer,
32 x 32x%3 input images are transformed into 16 x 16x 128
feature maps, followed by a feature enhancement network
(feature map). It consists of four branches, each of which
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FIGURE 18. Scheme of the proposed approach to identifying the state of
the drill string and the bit based on the WFT-2D-CapsNet method.

enhances the features characterizing bit damage and self-
oscillations in the drill string (Figure 17).

The basic CapsNet classifier consists of three parts:

1. The Primary capsule layer (Primary Caps), which is an
improved Conv2D layer in which 128 channels are converted
into 16 vectors of length 8;

2. The digital capsule (Digit Caps) layer that uses the
dynamic routing algorithm to transform the output of Pima-
rycaps into n 16-D capsule vectors, where the algorithm loops
three times, and n represents the number of fault types;

3. In the capsule layer class, the length of each capsule
vector represents the possibility of each type of malfunction,
i.e. the L2 norm the capsule vector determines the final
diagnostic result.

J. SUGGESTED APPROACH

The authors of the article propose an algorithm for detect-
ing the state of the drilling system, leading to its damage
(Figure 18):

Step 1: The signal of the change in the phase characteristics
of the electrical signals coming from the transmitter of the
experimental setup is processed, and the second derivative is
found from it.

Step 2: Using the Fourier Transform (WFT), the resulting
second derivative plot is converted into a 2D RGB image of
a specific size.

Step 3: These sample images are divided into two parts
according to a certain proportion: training set and test set. The
CapsNet model is trained.

Step 4: The test set is injected into the trained CapsNet
model to diagnose abnormal conditions.

Step 5: Diagnostic results are displayed.

Ill. RESULTS AND DISCUSSION

A. INDICATORS FOR DATA PRODUCTION AND
EVALUATION

In the process of processing the results of the experiment,
we will consider separately the translational and oscilla-
tory motion of the bit. The first process is rather extended
in time. For measurements, we take a time interval of
51.4 seconds with a frequency of taking indicators of 0.1 s.
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FIGURE 19. Periodic process on the diagram of changes in the phase
characteristics of an electrical signal.

TABLE 5. Number of samples used to determine transition of a bit from
one layer of rock to another.

TRANSITION
CHART DETECTION
CHART TYPE
CLASSIFICATION BIT BETWEEN
LAYERS

Bit transition between layers 155 155
The movement of the bit in a 160
homogeneous layer
Bit motion in a layer with a 112
denser inclusion
Bit movement in a layer with a 84 356

less dense inclusion or cavity

Every 10 seconds, a reprocessing process is performed. The
small amount of data processed at the same time allows you to
work in low latency mode. The oscillatory process is rapidly
changing. Its frequency is related to the speed of rotation of
the bit, and it takes much less time to determine the necessary
characteristics of this process. The determination of the pres-
ence of an oscillatory process is carried out for 10 seconds at
a frequency of taking indicators of 0.02 seconds. (Figure 19).
This process may be repeated periodically, for example, every
2 minutes.

For the first process. To simplify the classification task,
two stages of preprocessing were carried out. At the first
stage, data samples were selected based on the following
considerations: for all graphs in Figure 9, the capture interval
is 51.4 seconds at a sampling rate of 10 Hz.

In the second stage, the graphs returned to normal.

The results obtained were used to train the models (see
Table 5).

A 5-fold cross-validation method was applied to them.
The data was divided into two parts. The training set was
associated with the test set as 80% and 20% of all data,
respectively. The distribution structure of the training and
testing data is shown in Figure 20.

Identification of the transition between different layers of
rocks was carried out using binary classification. The first
class is the transition of the bit between two different layers,
and the second class is any other processes. When training
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FIGURE 20. lllustration of the 5-fold method used to evaluate the
effectiveness of the proposed method.

TABLE 6. Accuracy of four different deep learning architectures.

. WEFT-
Networks Basic-  VGGNet- 1D- D
DCNNs 16 CapsNet
CapsNet
Accuracy  88,3% 94,8% 98,5% 99.4%
2D-CapsNet 10-CapsNet
—  Drill transition .
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FIGURE 21. Confusion matrices for the 1D-CapsNet and WFT-2D-CapsNet
methods.

and testing methods, graphs of a fully completed process of
transition between stable states were used.

Four methods were used: Basic-DCNNs, VGGNet-16,
1D-CapsNet, and WFT-2D-CapsNet. The first two have per-
formed well in image classification. These methods can be
studied in detail in Lee et al. [72]. The accuracy of detecting
a bit transition between two rock layers with different prop-
erties is shown in Table 6.

For a more detailed explanation, Figure 21 shows a com-
parison of the confusion matrix for the two highest perform-
ing of the four algorithms. These are two types of capsular
neural networks: 1D-CapsNet and WFT-2D-CapsNet, devel-
oped by the authors of the article.

On the basis of the results, we see that the WFT-2D-
CapsNet method performs better.

We singled out two more classes: bit movement in a layer
with a denser inclusion and bit movement in a layer with a less
dense inclusion or cavity. For classification, the WFT-2D-
CapsNet method was used. Figure 22 shows the confusion
matrix for this method.

For the second process.

The features of the second sample are that the fluctuations
of the drilling system occur involuntarily and it is quite
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FIGURE 22. Confusion matrix for the WFT-2D-CapsNet method.

TABLE 7. Number of measurement series used to determine the type of
vibrations that occurred in the drilling system.

Chart
Chart type classification
Movement of an intact bit 20
with vibrations
Movement of a damaged bit 8

with vibrations

difficult to track them. This explains the small number of
signal samples (Table 7). The damaged bit had significant
wear and large chips on 20% of the cutting elements of the
PDC bits.

The experiments were carried out in series of 5 to 20 sep-
arate measurements, 10 s each, with a difference between
measurements of up to 2 min. The preprocessing steps are
described in the Suggested Approach section of the Materials
and Methods chapter.

The initial processing of a series of experiments is shown in
Figure 23. According to the diagram of the second derivative
Figure 23(b), you can visually assess the degree of wear
and damage to the bit. The more chaotic the graph, the
more damaged the bit. On the frequency response of a series
of experiments in Figure 23(c) clearly shows the frequency
of oscillations generated in the drill string and the bit (the
highest maximum on the graph).

To increase the sample size, we use GAN. The structure
of the GAN is given in the Materials and Methods chapter.
To determine the quality of the GAN proposed by the authors,
the Frechet Inception Distance (FID) metric was used. You
can see more about it in the work] Lee et al. [72].

Three methods were used for comparison with correspond-
ing FID results:

Image transformation (IT) including (width shift, height
shift, horizontal flip, vertical flip, rescale) — 0.637 £ 0.022;

The GAN used in the work is 0.693 £ 0.021;
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FIGURE 23. Initial processing of a series of experiments. a) diagram of
changes in the phase characteristics of the electrical signal; b) diagram of
the second derivative of a; c) frequency characteristics of a series of
experiments (Fourier transform); d) 2D model of each series.

GAN without Reduction module (instead of this module,
a Conv2D layer with a 3 x 3 core is inserted) - — 0.714 £
0.021.

The FID values were calculated by averaging the original
400 samples and the generated 400 samples of three types.
GAN training periods are set to 150. Optimizer is Adam.
It can be seen that the FID values for IT are minimal because it
only performs a geometric transformation but cannot learn the
distribution of features in the original data. The GAN method
we proposed is the second in terms of results, which indicates
that the data it generates are closest to the original and have
the best quality.

The results of the method are shown in the confusion
matrix (Figure 24).

To intuitively understand data differences between differ-
ent series of experiments, we use the t-SNE algorithm [69].
The data is taken at the WFT-2D-CapsNet class capsule level,
as shown in Figure 25.
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FIGURE 24. Confusion matrix for the WFT-2D-CapsNet method.
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FIGURE 25. Using t-SNE to visualize data at the capsule level
WFT-2D-CapsNet: (a) series of samples; (b) generated GAN data.

TABLE 8. Distribution of series of experiments by classes.

RELEVANT
Class name
CLASSES
Normal Normal
1-type damage S1, S4, S6, S7,
S8
2-type damage S3, S5
3-type damage S2

As can be seen in Figure 25. The feature distribution
of the original and generated samples is almost consistent,
indicating that the proposed GAN-based data augmentation
strategy can effectively augment imbalanced data. A number
of clusters from different samples intersect, which indicates
the similarity of bit damage. Combining overlapping clusters,
we got 4 classes (Table 8). We are primarily interested in the
ordinary class. It’s detection accuracy Is 98%.

With an increase in the depth of the well, the oscillation
frequency of the drill string and the bit decreases (Figure 26).
This changes the 2D model.

We found that WFT-2D-CapsNet starts to err when the
training and test samples differ in depth by more than
50 meters. On average, the accuracy decreases by 2% for
every 50 meters of difference.

IV. DISCUSSION
In this paper, the effectiveness of using machine learning
methods for continuous monitoring of the state of the drill
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FIGURE 26. Frequency response and 2D model of a series of experiments
under the conditions of the resulting vibration in the drilling system in
the case of an intact bit at different depths.

string and the bit is shown. As a data source, a phase metric
geoelectric experiment all set up was used, which made it
possible, firstly, to achieve a low time delay in detecting the
state of self oscillation of the drill string and the state of the bit
transition through rock layers with different properties, and
secondly, the degree of bit wear.

The phase metric geoelectric control method used has
increased accuracy and sensitivity to changes in the state of
the controlled object, which is unattainable using standard
amplitude methods. At the same time, it is not required to
place the system directly on the elements and structures of
the drilling rig.

The limitations of the method are: the need to solve the
problems of identify in extremely small geodynamic changes
in the near-surface zones of the geological environment,
the need to identify the initial signs of the development of
geotechnical processes, and the solution of the problem of
increasing noise immunity.

Approximate sound in depth - up to 1.5 km. In this case,
the electrodes must be spaced twice as far as the depth. The
installation was tested frequencies of the probing signal - up
to kilohertz Voltage - 1-2 kilovolts Power - 0.5 - 1 kW.

The results of modern rock surveys based on measurement-
while-drilling (MWD), logging-while-drilling (LWD) and
other tools that transmit downhole data collected to the sur-
face in near real time range from 70% to 96 % [74], [75],
[76]. The results obtained by us exceeded the best indicators
by 2-3%.

A significant result of the research is associated primar-
ily with the machine learning methods developed by the
authors of the article, which work on the basis of capsular
convolutional neural networks 1D-CapsNet and 2D-CapsNet.
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When conducting a comparative analysis with convolutional
neural networks (CNN), their accuracy is 3-7% lower. As an
example, Basic-DCNNs and VGGNet-16 were taken. Among
the capsular neural networks developed by the authors, 2D-
CapsNet turned out to be more accurate (its accuracy was
99% when determining the bit transition between rock lay-
ers). In addition, it uniquely identifies the oscillatory process
that has arisen on the drill string. The result of the method
is the classification of the operating state of the bit. From
our series of observations, we identified 4 classes of such
states. At this stage of the study, we are only interested in
the first option - a fully serviceable bit. The method proposed
by the authors separates this class from other classes with an
accuracy of 99%.

A. MAIN LIMITATIONS AND WIDER APPLICABILITY OF
THE METHOD

At this stage of the study, the method proposed by the authors
of the article can, with a probability of 99%, separate the
work of a serviceable bit from a bit with chips on it. In most
cases, you can work with such bits for some time. In further
work, it is planned to establish a criterion under which the
further operation of a damaged bit will be impractical or even
dangerous.

We found that WFT-2D-CapsNet starts to make errors
when the training and test samples differ in depth by more
than 50 meters. We believe that this shortcoming will be
eliminated with an increase in the number of experimental
samples taken at different depths.

It is planned to expand the research to a well depth of up
to 1.5 km.

REFERENCES

[1] L. Lin, H. Guo, F. Guo, Y. Lv, J. Liu, and C. Tong, “A novel
domain adversarial time-varying conditions intervened neural network
for drill bit wear monitoring of the jumbo drill under variable working
conditions,” Measurement, vol. 208, Feb. 2023, Art. no. 112474, doi:
10.1016/j.measurement.2023.112474.

A. G. Aribowo, R. Wildemans, E. Detournay, and N. van de Wouw,
“Drag bit/rock interface laws for the transition between two layers,” Int.
J. Rock Mech. Mining Sci., vol. 150, Feb. 2022, Art. no. 104980, doi:
10.1016/j.ijrmms.2021.104980.

S. K. Gupta and P. Wahi, “Tuned dynamics stabilizes an idealized regen-
erative axial-torsional model of rotary drilling,” J. Sound Vib., vol. 412,
pp. 457473, Jan. 2018.

U. J. E Aarsnes and N. van de Wouw, ‘“Axial and torsional self-
excited vibrations of a distributed drill-string,” J. Sound Vib., vol. 444,
pp. 127-151, Mar. 2019.

Y. A. Khulief and H. Al-Naser, “Finite element dynamic analysis of
drillstrings,” Finite Elements Anal. Des., vol. 41, pp. 1270-1288, Jul. 2005.
B. Besselink, T. Vromen, N. Kremers, and N. van de Wouw, “Analysis and
control of stick-slip oscillations in drilling systems,” IEEE Trans. Control
Syst. Technol., vol. 24, no. 5, pp. 1582-1593, Sep. 2016.

M. Wu, J. Cheng, C. Lu, L. Chen, X. Chen, W. Cao, and X. Lai,
“Disturbance estimator and Smith predictor-based active rejection of
stick—slip vibrations in drill-string systems,” Int. J. Syst. Sci., vol. 51,no. 5,
pp. 826-838, Apr. 2020.

Y. A. Khulief, F. A. Al-Sulaiman, and S. Bashmal, “Vibration analysis
of drillstrings with self-excited stick—slip oscillations,” J. Sound Vib.,
vol. 299, no. 3, pp. 540-558, Jan. 2007.

B. Besselink, N. van de Wouw, and H. Nijmeijer, “‘A semi-analytical study
of stick-slip oscillations in drilling systems,” J. Comput. Nonlinear Dyn.,
vol. 6, no. 2, pp. 021006-1-021006-9, Apr. 2011.

[2]

[3]

[4]

[5]
[6]

[71

[8]

[91

60362

(10]

(11]

[12]

[13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

[23]

(24]

[25]

[26]

(27]

(28]

(29]

J. R. Bailey, E. A. O. Biediger, V. Gupta, D. Ertas, W. C. Elks,
and F. E. Dupriest, “Drilling vibrations modeling and field validation,”
in Proc. IADC/SPE Drilling Conf. Richardson, TX, USA: OnePetro,
Mar. 2008.

S. F. Sowers, F. E. Dupriest, J. R. Bailey, and L. Wang, “Roller ream-
ers improve drilling performance in wells limited by bit and bottom-
hole assembly vibrations,” in Proc. SPE/IADC Drilling Conf. Exhib.
Richardson, TX, USA: OnePetro, Mar. 2009.

J.R. Bailey, E. A. O. Biediger, S. Sundararaman, A. D. Carson, W. C. Elks,
and F. E. Dupriest, “Development and application of a BHA vibra-
tions model,” in Proc. Int. Petroleum Technol. Conf. Richardson, TX,
USA: OnePetro, Dec. 2008.

F. E. Dupriest, W. C. Elks, S. Ottesen, P. E. Pastusek, J. R. Zook, and
C. R. Aphale, “Borehole quality design and practices to maximize drill
rate performance,” in Proc. SPE Annu. Tech. Conf. Exhib. Richardson, TX,
USA: OnePetro, Sep. 2010.

X. Liu, N. Vlajic, X. Long, G. Meng, and B. Balachandran, “Coupled
axial-torsional dynamics in rotary drilling with state-dependent delay:
Stability and control,” Nonlinear Dyn., vol. 78, no. 3, pp. 1891-1906,
Nov. 2014.

K. Nandakumar and M. Wiercigroch, ““Stability analysis of a state depen-
dent delayed, coupled two DOF model of drill-stringvibration,” J. Sound
Vib., vol. 332, no. 10, pp. 2575-2592, May 2013.

C. Lu, M. Wu, X. Chen, W. Cao, C. Gan, and J. She, “Torsional vibration
control of drill-string systems with time-varying measurement delays,” Inf.
Sci., vol. 467, pp. 528-548, Oct. 2018.

X. Liu, N. Vlajic, X. Long, G. Meng, and B. Balachandran, ‘“Nonlinear
motions of a flexible rotor with a drill bit: Stick-slip and delay eftects,”
Nonlinear Dyn., vol. 72, nos. 1-2, pp. 61-77, Apr. 2013.

H. Zhang and E. Detournay, “A high-dimensional model to study the self-
excited oscillations of rotary drilling systems,” Commun. Nonlinear Sci.
Numer. Simul., vol. 112, Sep. 2022, Art. no. 106549.

A. G. Aribowo, R. Wildemans, E. Detournay, and N. van de Wouw, ‘‘Drag
bit/rock interface laws for the transition between two layers,” Int. J. Rock
Mech. Mining Sci., vol. 150, Feb. 2022, Art. no. 104980.

F.Zhang, Y. Lu, D. Xie, H. Luo, R. Shi, and P. Zhang, “Experimental study
on the impact resistance of interface structure to PDC cutting tooth,” Eng.
Failure Anal., vol. 140, Oct. 2022, Art. no. 106503.

Z. Huang, D. Xie, B. Xie, W. Zhang, F. Zhang, and L. He, “Investigation
of PDC bit failure base on stick-slip vibration analysis of drilling string
system plus drill bit,” J. Sound Vib., vol. 417, pp. 97-109, Mar. 2018.

A. Toutov, N. Toutova, A. Vorozhtsov, and I. Andreev, “Optimizing the
migration of virtual machines in cloud data centers,” Int. J. Embed-
ded Real-Time Commun. Syst., vol. 13, no. 1, pp. 1-19, 2022, doi:
10.4018/IJERTCS.289200.

A.Z. Mazen, 1. M. Mujtaba, A. Hassanpour, and N. Rahmanian, “Math-
ematical modelling of performance and wear prediction of PDC drill bits:
Impact of bit profile, bit hydraulic, and rock strength,” J. Petroleum Sci.
Eng., vol. 188, May 2020, Art. no. 106849.

A. V. Toutov, N. V. Toutova, and A. S. Vorozhtsov, “Analysis of
data center development problems in the era of digital transformation,”
in Model-Driven Organizational and Business Agility (Lecture Notes
in Business Information Processing), vol. 457, E. Babkin, J. Barjis,
P. Malyzhenkov, and V. Merunka, Eds. Cham, Switzerland: Springer,
2022, doi: 10.1007/978-3-031-17728-6_6.

K. Miyazaki, T. Ohno, H. Karasawa, and H. Imaizumi, ‘‘Performance of
polycrystalline diamond compact bit based on laboratory tests assuming
geothermal well drilling,” Geothermics, vol. 80, pp. 185-194, Jul. 2019.
K. U. M. Rao, A. Bhatnagar, and B. Misra, ‘‘Laboratory investigations on
rotary diamond drilling,” Geotechnical Geological Eng., vol. 20, no. 1,
pp. 1-16, 2002.

J. Liu, H. Zheng, Y. Kuang, H. Xie, and C. Qin, “3D numerical simulation
of rock cutting of an innovative non-planar face PDC cutter and exper-
imental verification,” Appl. Sci., vol. 9, no. 20, p. 4372, Oct. 2019, doi:
10.3390/app9204372.

Q. Peng, Y. Zhou, J. Yu, X. Yang, Y. Liu, C. Ma, C. Cheng, and X. Ke,
“Study on rock breaking efficiency of special shaped cutters,” IOP Conf.
Ser., Earth Environ. Sci., vol. 983, no. 1, Feb. 2022, Art. no. 012089, doi:
10.1088/1755-1315/983/1/012089.

Y. Zhao, A. Noorbakhsh, M. Koopialipoor, A. Azizi, and M. M. Tahir,
“A new methodology for optimization and prediction of rate of penetration
during drilling operations,” Eng. Comput., vol. 36, no. 2, pp. 587-595,
Apr. 2020, doi: 10.1007/s00366-019-00715-2.

VOLUME 11, 2023


http://dx.doi.org/10.1016/j.measurement.2023.112474
http://dx.doi.org/10.1016/j.ijrmms.2021.104980
http://dx.doi.org/10.4018/IJERTCS.289200
http://dx.doi.org/10.1007/978-3-031-17728-6_6
http://dx.doi.org/10.3390/app9204372
http://dx.doi.org/10.1088/1755-1315/983/1/012089
http://dx.doi.org/10.1007/s00366-019-00715-2

A. Osipov et al.: Machine Learning Methods Based on Geophysical Monitoring Data

IEEE Access

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

J. Tang, Y. Lu, Z. Ge, B. Xia, H. Sun, and P. Du, “A new method of
combined rock drilling,” Int. J. Mining Sci. Technol., vol. 24, no. 1, pp. 1-6,
2014.

Y. Zhan and G. Zhang, “An improved Otsu algorithm using histogram
accumulation moment for ore segmentation,” Symmetry, vol. 11, no. 3,
p- 431, Mar. 2019.

J. D. Kana, N. Djongyang, D. Raidandi, P. N. Nouck, and A. Dadjé,
“A review of geophysical methods for geothermal exploration,” Renew.
Sustain. Energy Rev., vol. 44, pp. 87-95, Apr. 2015.

E. Boltacheyv, “‘Potential cyber threats of adversarial attacks on autonomous
driving models,” J. Comput. Virol. Hacking Techn., pp. 1-11, 2023.

A. Malehmir, E. Koivisto, M. Manzi, S. Cheraghi, R. J. Durrheim,
G. Bellefleur, C. Wijns, K. A. A. Hein, and N. King, “A review of
reflection seismic investigations in three major metallogenic regions:
The Kevitsa Ni-Cu-PGE district (Finland), Witwatersrand goldfields
(South Africa), and the Bathurst Mining Camp (Canada),” Ore Geol. Rev.,
vol. 56, pp. 423-441, Jan. 2014.

C. C. Pretorius, M. R. Miiller, M. Larroque, and C. Wilkins, “A review
of 16 years of hardrock seismics on the Kaapvaal Craton,” in Hard Rock
Seismic Exploration, D. W. Eaton, B. Milkereit, and M. H. Salisbury, Eds.
Tulsa, OK, USA: SEG, 2003, pp. 247-268.

M. Urosevic, B. Ganesh, and G. Marcos, “‘Targeting nickel sulfide deposits
from 3D seismicreflection data at Kambalda, Australia,” Geophysics,
vol. 75, pp. 123-132, Sep. 2012.

T. D. Nguyen and K. T. Tran, “Site characterization with 3D elastic full-
waveform tomography,” Geophysics, vol. 83, no. 5, pp. 389-400, 2018,
doi: 10.1190/ge02017-0571.1.

S. Udphuay, T. Giinther, M. E. Everett, R. R. Warden, and J. Briaud,
“Three-dimensional resistivity tomography in extreme coastal terrain
amidst dense cultural signals: Application to cliff stability assessment at
the historic D-day site,” Geophys. J. Int., vol. 185, no. 1, pp. 201-220,
Apr. 2011, doi: 10.1111/j.1365-246X.2010.04915.x.

J. Place and A. Malehmir, “Using supervirtual first arrivals in controlled-
source hardrock seismic imaging—Well worth the effort,”” Geophys. J. Int.,
vol. 206, no. 1, pp. 716-730, Jul. 2016, doi: 10.1093/gji/ggw176.

V. Ivanyuk, “Forecasting of digital financial crimes in Russia based on
machine learning methods,” J. Comput. Virol. Hacking Techn., May 2023,
doi: 10.1007/s11416-023-00480-3.

M. D. Baknin, D. I. Surzhik, G. S. Vasilyev, and N. V. Dorofeev, “The mod-
eling of the phase-metric method of the geoelectrical control of oil sludge
straits,” IOP Conf. Ser, Earth Environ. Sci., vol. 459, no. 4, Apr. 2020,
Art. no. 042085.

R. Ekhlakov, E. Romanova, E. Dogadina, S. Korchagin, S. Gataullin,
J. Mosiej, T. Gataullin, and P. Nikitin, “Modeling the chemical pollution
of the area by the random-addition method,” Fractal Fractional, vol. 6,
no. 4, p. 193, Mar. 2022, doi: 10.3390/fractalfract6040193.

0. Kuzichkin, A. Grecheneva, E. Mikhaleva, N. Dorofeev, and B. Maxim,
“Application of phase-metric measuring system for geodynamic control of
Karst processes,” J. Eng. Appl. Sci., vol. 12, no. 4, pp. 6563-6858, 2017.

O. R. Kuzichkin, G. S. Vasilyev, M. D. Baknin, and D. I. Surzhik,
“The phase-metric method of isolating the information component in the
distributed processing of geoelectric signals in geoecological monitoring
systems,” J. Adv. Res. Dyn. Control Syst., vol. 12, no. S6, pp. 463471,
2020.

O. R. Kuzichkin, G. S. Vasilyev, A. V. Grecheneva, E. V. Mikhaleva,
M. D. Baknin, and D. I. Surzhik, “Application of phase-metric compen-
sation method for geoelectric control of near-surface geodynamic pro-
cesses,” Bull. Electr. Eng. Informat., vol. 9, no. 3, pp. 898-905, Jun. 2020,
doi: 10.11591/eei.v9i3.1727.

0. R. Kuzichkin, R. V. Romanov, N. V. Dorofeev, G. S. Vasilyev, and
A. V. Grecheneva, “Hydrogeological monitoring of karst activity based on
regime observations in the territory of karst lakes,” J. Water Land Develop.,
no. 48, 2021.

A. Bykov, A. Grecheneva, O. Kuzichkin, D. Surzhik, G. Vasilyev, and
Y. Yerbayev, ‘“Mathematical description and laboratory study of electro-
physical methods of localization of geodeformational changes during the
control of the railway roadbed,” Mathematics, vol. 9, no. 24, p. 3164,
Dec. 2021.

S. Liu, H. Jiang, Z. Wu, and X. Li, “Rolling bearing fault diagnosis
using variational autoencoding generative adversarial networks with deep
regret analysis,” Measurement, vol. 168, Jan. 2021, Art. no. 108371, doi:
10.1016/j.measurement.2020.108371.

VOLUME 11, 2023

(49]

[50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

(591

(60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

S. Lee, T. P. Connerton, Y. Lee, D. Kim, D. Kim, and J. Kim, “Semi-
GAN: An improved GAN-based missing data imputation method for the
semiconductor industry,” IEEE Access, vol. 10, pp. 72328-72338, 2022,
doi: 10.1109/ACCESS.2022.3188871.

X. Wang and H. Liu, “Data supplement for a soft sensor using a
new generative model based on a variational autoencoder and Wasser-
stein GAN,” J. Process Control, vol. 85, pp. 91-99, Jan. 2020, doi:
10.1016/j.jprocont.2019.11.004.

A. Kositzyn, D. Serdechnyy, S. Korchagin, E. Pleshakova, P. Nikitin,
and N. Kurileva, “Mathematical modeling, analysis and evaluation of the
complexity of flight paths of groups of unmanned aerial vehicles in aviation
and transport systems,” Mathematics, vol. 9, no. 17, p. 2171, Sep. 2021,
doi: 10.3390/math9172171.

Q. Guo, Y. Li, Y. Song, D. Wang, and W. Chen, “Intelligent fault diagnosis
method based on full 1-D convolutional generative adversarial network,”
IEEE Trans. Ind. Informat., vol. 16, no. 3, pp. 2044-2053, Mar. 2020.

X. Liu, D. He, G. Lodewijks, Y. Pang, and J. Mei, “Integrated decision
making for predictive maintenance of belt conveyor systems,” Rel. Eng.
Syst. Saf., vol. 188, pp. 347-351, Aug. 2019.

S. Niu, B. Li, X. Wang, and H. Lin, “Defect image sample generation with
GAN for improving defect recognition,” IEEE Trans. Autom. Sci. Eng.,
vol. 17, no. 3, pp. 1611-1622, Jul. 2020.

J. Liu, C. Zhang, and X. Jiang, “Imbalanced fault diagnosis of rolling
bearing using improved MsR-GAN and feature enhancement-driven Cap-
sNet,” Mech. Syst. Signal Process., vol. 168, Apr. 2022, Art. no. 108664,
doi: 10.1016/j.ymssp.2021.108664.

S. Gao, X. Wang, X. Miao, C. Su, and Y. Li, “ASM1D-GAN: An intelli-
gent fault diagnosis method based on assembled 1D convolutional neural
network and generative adversarial networks,” J. Signal Process. Syst.,
vol. 91, no. 10, pp. 1237-1247, Oct. 2019, doi: 10.1007/s11265-019-
01463-8.

M. Bo, C. Weidong, and Z. Dali, “Intelligent diagnosis method based
on GAN sample generation technology,” Vib. Shock, vol. 39, no. 18,
pp. 153-160, 2020.

X. Lin, Z. Xiaotong, and F. Bo, “‘Fault diagnosis method of motor bearing
based on improved GAN algorithm,” J. Northeastern Univ. Natural Sci.
Ed., vol. 40, no. 12, pp. 1679-1684, 2019.

D. Cabrera, F. Sancho, J. Long, R. Sanchez, S. Zhang, M. Cerrada, and
C. Li, “Generative adversarial networks selection approach for extremely
imbalanced fault diagnosis of reciprocating machinery,” IEEE Access,
vol. 7, pp. 70643-70653, 2019.

D. Barotov, A. Osipov, S. Korchagin, E. Pleshakova, D. Muzafarov,
R. Barotov, and D. Serdechnyy, “Transformation method for solving sys-
tem of Boolean algebraic equations,” Mathematics, vol. 9, no. 24, p. 3299,
Dec. 2021, doi: 10.3390/math9243299.

S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. Adv. Neural Inf. Process. Syst., vol. 30, 2017, doi:
10.48550/arXiv.1710.09829.

A. V. Vasiliev, A. O. Melnikov, and S. A. Lesko, “Robust neural network
filtering in the tasks of building intelligent interfaces,” Russian Technol.
J., vol. 11, no. 2, pp. 7-19, 2023.

N. Andriyanov, I. Khasanshin, D. Utkin, T. Gataullin, S. Ignar, V. Shumaev,
and V. Soloviev, “Intelligent system for estimation of the spatial position of
apples based on YOLOV3 and real sense depth camera D415, Symmetry,
vol. 14, p. 148, 2022, doi: 10.3390/sym140101438.

H. Zhao, Y. Xiao, and Z. Zhang, ‘‘Robust semisupervised generative adver-
sarial networks for speech emotion recognition via distribution smooth-
ness,” IEEE Access, vol. 8, pp. 106889-106900, 2020.

M. T. Pham, J. M. Kim, and C. H. Kim, “Rolling bearing fault diagnosis
based on improved GAN and 2-D representation of acoustic emission
signals,” IEEE Access, vol. 10, pp. 78056-78069, 2022.

T. Hahn, M. Pyeon, and G. Kim, ““Self-routing capsule networks,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 32, 2019.

G. E. Hinton, S. Sabour, and N. Frosst, “Matrix capsules with
EM routing,” in Proc. Int. Conf. Learn. Represent., 2018, doi:
10.13140/RG.2.2.27416.44800.

E. Butun, O. Yildirim, M. Talo, R. S. Tan, and U. R. Acharya, “1D-
CADCapsNet: One dimensional deep capsule networks for coronary artery
disease detection using ECG signals,” PhysicaMedica, vol. 70, pp. 39-48,
2020.

R. LaLonde, Z. Xu, I. Irmakci, S. Jain, and U. Bagci, “Capsules for
biomedical image segmentation,”” Dec. 2020, pp. 1-19, arXiv:2004.04736.
B. Biswal, P. G. Pavani, T. Prasanna, and P. K. Karn, ‘“Robust segmenta-
tion of exudates from retinal surface using M-CapsNet via EM routing,”
Biomed. Signal Process. Control, vol. 68, Jul. 2021, Art. no. 102770.

60363


http://dx.doi.org/10.1190/geo2017-0571.1
http://dx.doi.org/10.1111/j.1365-246X.2010.04915.x
http://dx.doi.org/10.1093/gji/ggw176
http://dx.doi.org/10.1007/s11416-023-00480-3
http://dx.doi.org/10.3390/fractalfract6040193
http://dx.doi.org/10.11591/eei.v9i3.1727
http://dx.doi.org/10.1016/j.measurement.2020.108371
http://dx.doi.org/10.1109/ACCESS.2022.3188871
http://dx.doi.org/10.1016/j.jprocont.2019.11.004
http://dx.doi.org/10.3390/math9172171
http://dx.doi.org/10.1016/j.ymssp.2021.108664
http://dx.doi.org/10.1007/s11265-019-01463-8
http://dx.doi.org/10.1007/s11265-019-01463-8
http://dx.doi.org/10.3390/math9243299
http://dx.doi.org/10.48550/arXiv.1710.09829
http://dx.doi.org/10.3390/sym14010148
http://dx.doi.org/10.13140/RG.2.2.27416.44800

IEEE Access

A. Osipov et al.: Machine Learning Methods Based on Geophysical Monitoring Data

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification,” in Proc.
IEEE Int. Conf. Comput. Vis. (ICCV). Santiago, Chile: IEEE, Dec. 2015,
pp. 1026-1034, doi: 10.48550/arXiv.1502.01852.

[72] A.-R. Lee, Y. Cho, S. Jin, and N. Kim, “Enhancement of surgical hand
gesture recognition using a capsule network for a contactless interface
in the operating room,” Comput. Methods Programs Biomed., vol. 190,
Jul. 2020, Art. no. 105385, doi: 10.1016/j.cmpb.2020.105385.

[73] C.-I. Kim, M. Kim, S. Jung, and E. Hwang, “Simplified Fréchet distance
for generative adversarial nets,” Sensors, vol. 20, no. 6, p. 1548, Mar. 2020,
doi: 10.3390/s200615438.

[74] A. Fernandez, J. A. Sanchidridn, P. Segarra, S. Gémez, E. Li, and
R. Navarro, “Rock mass structural recognition from drill monitoring tech-
nology in underground mining using discontinuity index and machine
learning techniques,” Int. J. Mining Sci. Technol., vol. 33, no. 5,
pp. 555-571, May 2023, doi: 10.1016/j.ijmst.2023.02.004.

[75] G. Chen, L. Chen, and Q. Li, “Comparison and application of neural
networks in LWD lithology identification,” IOP Conf. Ser., Earth Envi-
ron. Sci., vol. 526, no. 1, Jun. 2020, Art. no. 012146, doi: 10.1088/1755-
1315/526/1/012146.

[76] M. L. Arng, J.-M. Godhavn, and O. M. Aamo, “At-bit estimation of
rock density from real-time drilling data using deep learning with online
calibration,” J. Petroleum Sci. Eng., vol. 206, Nov. 2021, Art. no. 109006,
doi: 10.1016/j.petrol.2021.109006.

ALEXEY OSIPOV received the Graduate degree
from the Shuisky State Pedagogical Institute,
named after D. A. Furmanov, in 1995, with a
focus on mathematics and physics, the degree
from Moscow State Industrial University, with a
focus on applied computer science in economics,
in 2007, and the degree from the Ivanovo State
University of Chemical Technology, with a focus
on labor protection, in 2016. He is currently an
employee with the Moscow Technical University
of Communications and Informatics, and a candidate of physical and math-
ematical sciences, in 1999.

EKATERINA PLESHAKOVA graduated from
Saratov State Technical University. She is cur-
rently an employee with the Moscow Technical
University of Communications and Informatics,
and a candidate of technical sciences. Her research
interests include artificial intelligence and infor-
mation security.

ARTEM BYKOV was born in Murom, Russia,
in 1982. He received the Ph.D. degree, in 2010.
In 2010, he defended his dissertation on the design
of public address systems. Since 2004, he has
been with the Department of Software Engineer-
ing, Vladimir State University, Russia. Since 2021,
he has been an Associate Professor with the
Department of Data Analysis and Machine Learn-
ing, Financial University under the Government of
the Russian Federation, Russia. He is the author of
over 70 articles. His current research interests include data processing and
the analysis of geophysical soil control data, and the design of geographic
information systems.

60364

OLEG KUZICHKIN received the degree in radio
engineering from the Vladimir Polytechnic Insti-
tute, in 1984, the Candidate degree in physical and
mathematical sciences, and the Doctor of Tech-
nical Sciences degree. In 1999, he successfully
defended thesis on the topic: “The Monitoring
System of Pulsed Geomagnetic Sources” with the
Institute of Physics of the Earth, RAS. In 2009,
his Doctor of Technical Sciences work: ‘“Theo-
retical Foundations of Automated Electromagnetic
Control of Geodynamic Objects.” Currently, he is a Professor with the
Department of Information and Robotic Systems, Belgorod State University.
His research interests include monitoring and diagnostics systems, radio
engineering systems, geodynamic monitoring, measuring equipment, elec-
tromagnetic signals, information processing, expert systems, and automated
systems.

DMITRY SURZHIK received the degree in
radio engineering from Vladimir State University,
Russia, in 2012. He defended the thesis of the
candidate of technical sciences (Ph.D.) degree in
the specialty ‘“Radio engineering, including tele-
vision systems and devices,” in 2017. Since 2017,
he has been an Assistant Professor with Vladimir
State University. His research interests include
geodynamic monitoring, communication networks
and systems, signal generation and conversion
devices, frequency synthesizers, interference compensation, and approxima-
tion methods.

STANISLAV SUVOROV received the master’s
degree from the Peoples’ Friendship University
of Russia, with a focus on scientific mathemat-
ics, in 1994. Since 1995, he has been a Lecturer
with Moscow Industrial University. Since 2005,
he has been the Head of the Department of Applied
Informatics, the Head of the Bachelor’s Degree
Program “Big and Open Data,” the Head of the
Master’s Degree Program ““System Analytics of
Big Data,” and the Co-Head of the Professional
Retraining Program ‘‘Data-Based Management—Chief Data Officer.”

SERGEY GATAULLIN received the Graduate
degree from the State University of Management.
He is currently pursuing the degree in economic
sciences. He is a specialist in the mathematical
methods of decision-making, economic, and math-
ematical modeling. He is also the Dean of the
Faculty of “Digital Economy and Mass Commu-
nications,” Moscow Technical University of Com-
munications and Informatics.

VOLUME 11, 2023


http://dx.doi.org/10.48550/arXiv.1502.01852
http://dx.doi.org/10.1016/j.cmpb.2020.105385
http://dx.doi.org/10.3390/s20061548
http://dx.doi.org/10.1016/j.ijmst.2023.02.004
http://dx.doi.org/10.1088/1755-1315/526/1/012146
http://dx.doi.org/10.1088/1755-1315/526/1/012146
http://dx.doi.org/10.1016/j.petrol.2021.109006

