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Abstract
The problem of recovery of the solution of the singular heat equation over the positive
part of the real line at a given time is solved from inaccurate measurements of this
solution at other times. Explicit expressions for the optimal recovery method and its
errors are obtained.
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1 Introduction: problem statement and interim results

It is well known that the temperature distribution in R
N is described by the equation

∂u

∂t
= �u + f (x, t),

where � = ∂2/∂x21 + . . . ∂2/∂x2n is the Laplace operator in R
N .

The authors of [11] stated the following problem. Let there be temperature dis-
tributions u(·, t1), . . . , u(·, tp) at the instants of time 0 ≤ t1 < · · · < tp given
approximately. More precisely, we know functions y j (·) ∈ L2(R

N ) such that
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‖u(·, t j ) − y j (·)‖L2(RN ) ≤ δ j , where δ j > 0, j = 1, . . . , p. For every set of such
functions we want to find a function in L2(R

N )which approximate a real temperature
distribution in R

N at a fixed instant of time τ in a best way in some sense. We inves-
tigate a similar problem for the singular heat kind equation with the Bessel operator
[4–10, 12, 13, 16, 17]. Singularities of the above type arise in models of mathemati-
cal physics such that the characteristic of the media (e.g., diffusion characteristics or
heat-conductivity characteristics) have degenerate power-like heterogeneities.

Let’s consider the initial-value Cauchy problem for the equation

∂u

∂t
= Bu, x ∈ R+, t > 0,

where B is the Bessel operator at R, defined by the formula

B u = ∂2u

∂x2
+ γ

x

∂u

∂x
,

with the initial condition
u(x, 0) = u0(x), x ∈ R+.

We assume that u0(·) ∈ Lγ
2 (R+). The unique solution to this problem was gotten at

[17], [13] by the next formula, generalizing the well-known Poisson formula

u(x, t) = 1

2t xν

∫

R+
ην+1 u0(η) Iν

(ηx

2t

)
exp

(
−η2 + x2

4t

)
dη . (1)

where

Iν (z) =
∞∑

m=1

z2m+ν

22m+νm!	(m + ν + 1)

is the modified Bessel function of the first kind of order ν, 	(·) is the Euler gamma
function.

The following problem is set.
Let functions y j (·) ∈ Lγ

2 (R) be known at moments 0 ≤ t1 < · · · < tp and

‖u(·, t j ) − y j (·)‖Lγ
2 (R+) ≤ δ j , j = 1, . . . , p,

with δ j > 0, j = 1, . . . , p. It is required for each such set of functions to match a
function from Lγ

2 (R+), which in some sense would best approximate the true tem-
perature distribution in R at a fixed point in time τ . In this regard, following [11], we
call any mapping m : Lγ

2 (R+) × · · · × Lγ
2 (R+) −→ Lγ

2 (R+) the recovery method
(temperatures in R at time τ according to this information). The value

e(τ, δ, m) = sup
U

‖u(·, τ ) − m(y j (·))(·)‖Lγ
2 (R+),
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where y(·) = (y1(·), . . . , yp(·)), δ = (δ1(·), . . . , δp(·)),

U = {(u0(·), y(·)) ∈ Lγ
2 (R+) : ‖u(·, t j ) − y j (·)‖Lγ

2 (R+) ≤ δ j , j = 1, . . . , p},

is called the error of this method. The value

E(τ, δ) = inf
m:(Lγ

2 (R))p−→Lγ
2 (R+)

e(τ, δ, m)

is called the error of optimal recovery. The method m̂, for which

E(τ, δ) = e(τ, δ, m̂),

is called the optimal method of the recovery.

2 The lower bound of the optimal method

Let’s introduce the operator Pt : Lγ
2 (R) −→ Lγ

2 (R+), defined by formula (1):

Pt u0(·)(x, t) = 1

2t xν

∫

R+

ην+1 u0(η) Iν
(ηx

2t

)
exp

(
−η2 + x2

4t

)
dη ,

t > 0 is a fixed value, P0 is an identical operator.
Let τ ≥ 0. Let’s consider the next problem

‖Pτ u0(·)‖Lγ
2 (R+) −→ max, (2)

‖Pt j u0(·)‖Lγ
2 (R+) ≤ δ j , j = 1, . . . , p, u0(·) ∈ Lγ

2 (R+). (3)

A function that satisfies the condition (3) is called a valid function of the problem
(2)–(3).

Let S mean the upper bound of ‖Pτ u0(·)‖Lγ
2 (R+) with conditions (3) and is called

the value of the problem (2)–(3).

Lemma 1
E(τ, δ) ≥ S.

Proof Let u0(·) be a valid function of problem (2)–(3). Then−u0(·) is a valid function
of problem (2)–(3) too. For any method m : (Lγ

2 (R+))p −→ Lγ
2 (R+), we have

2‖Pτ u0(·)‖Lγ
2 (R+) = ‖Pτ u0(·) − m(0)(·) + m(0)(·) − Pτ (−u0(·))‖Lγ

2 (R+)

≤ ‖Pτ u0(·) − m(0)(·)‖Lγ
2 (R+) + ‖m(0)(·) − Pτ (−u0(·))‖Lγ

2 (R+)

≤ 2 sup
u0(·) ∈ Lγ

2 (R+)

‖Pt j u0(·)‖L
γ
2 (R)

≤ δ j , j = 1, . . . , p

‖Pτ u0(·) − m(0)(·)‖Lγ
2 (R+)
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≤ 2 sup
U

‖Pτ u0(·) − m(y(·))(·)‖Lγ
2 (R+) .

In the left part of the resulting inequality, we pass to the supremum over admissible
functions, and in the right one to the infimum over all methods. This step completes
the proof of the lemma. �	

Using formula 6.633 (4) from the book [2] it is easy to obtain that

Fγ [Pt u0(·)](ξ) = exp(−|ξ |2t)Fγ u0(ξ).

Therefore, by the Parseval–Plancherel theorem for the Fourier–Bessel transform the
squared value of the problem (2)–(3) is equal to the value of the next problem

1

22ν	2(ν + 1)

∫

R+

ξ2ν+1e−2|ξ |2τ |Fγ u0(ξ)|2 dξ −→ max, u0(·) ∈ Lγ
2 (R+), (4)

1

22ν	2(ν + 1)

∫

R+

ξ2ν+1e−2|ξ |2t j |Fγ u0(ξ)|2 dξ ≤ δ2j , j = 1, . . . , p. (5)

Let’s move from the problem (4)–(5) to the extended problem (according the termi-
nology [11]). To do this, let’s replace 1

22ν	2(ν+1)
|Fγ u0(ξ)|2ξ2ν+1 dξ for the positive

measure dμ(ξ).

∫

R+

e−2|ξ |2τ dμ(ξ) −→ max, (6)

∫

R+

e−2|ξ |2t j dμ(ξ) ≤ δ2j , j = 1, . . . , p. (7)

The Lagrange function for this problem has the form

L(dμ(·), λ) = λ0

∫

R+

e−2|ξ |2τ dμ(ξ) +
p∑

j=1

λ j

⎛
⎜⎝
∫

R+

e−2|ξ |2t j dμ(ξ) − δ2j

⎞
⎟⎠ ,

where λ = (λ0, λ1, . . . , λp) is a set of the Lagrange multipliers. Extended problem
(6)–(7)was solved in [11]. For the complete of the narrative,wewill need to rewrite this
solution, slightly changing the specific meanings for our needs. On a two-dimensional
plane (t, y), we construct a set

M = c o

{(
t j , ln

(
1

δ j

))
j = 1, . . . , p

}
+ {(t, 0) : t ≥ 0} ,
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where c o A means the convex hall of set A. Let’s introduce the function θ(t) on the
ray [0,+∞):

θ(t) = max{y : (t, y) ∈ M},

assuming that θ(t) = −∞ if (t, y) /∈ M , for all y. On the ray [t1,+∞), the graph of
the function θ(t) is an upward convex (concave) polygonal line. Let t1 = ts1 < ts2 <

· · · < ts
 be the essence of its breaking point. Obviously, {ts1 < ts2 < · · · < ts
 } ⊆
{t1 < t2 < · · · < tp}.

We need to consider three cases.
(a) Let τ ≥ t1, while to the right of τ there is a break point of the function θ(t).

Suppose that τ ∈ [ts j , ts j+1). Let dμ̂(ξ) = xγ T ξ0
ξ δγ , where the parameters A0 and ξ0

are determined from the conditions
∫

R+

e−2|ξ |2τ dμ̂(ξ) = Ae−2|ξ0|2tk = δ2k , k = s j , s j+1 . (8)

From conditions (8), we get

A = δ
2ts j+1/(ts j+1−ts j )

s j δ
−2ts j /(ts j+1−ts j )

s j+1 ,

|ξ0|2 = ln δs j /δs j+1

ts j+1 − ts j

= ln(1/δs j+1) − ln(1/δs j )

ts j+1 − ts j

.

Let λ̂0 = −1, λ̂k = 0, k �= s j , s j+1. In order to find numbers λs j , λs j+1 , let’s make
some preparations. Let

f (v) = λ0 +
p∑

j=1

λ j e
−2v(t j −τ).

We require that f (|ξ0|2) = f ′(|ξ0|2) = 0. From here, we obtain a system of linear
equations with respect to λs j , λs j+1

λs j e
−2|ξ0|2(ts j −τ) + λs j+1e−2|ξ0|2(ts j+1−τ) = 1,

λs j (ts j − τ)e−2|ξ0|2(ts j −τ) + λs j+1(ts j+1 − τ)e−2|ξ0|2(ts j+1−τ) = 0.

After solving this system, we get

λs j = ts j+1 − τ

ts j+1 − ts j

(
δs j+1

δs j

)2(τ−ts j )/(ts j+1−ts j )

,

λs j = τ − ts j

ts j+1 − ts j

(
δs j

δs j+1

)2(ts j+1−τ)/(ts j+1−ts j )

.
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For the measure dμ̂(ξ), we have:

min
dμ(·)≥0

L(dμ(·), λ̂) = L(dμ(·), λ̂), (9)

λ̂ j

⎛
⎜⎝
∫

R+

e−2|ξ |2τ dμ̂(ξ) − δ2j

⎞
⎟⎠ = 0, j = 1, . . . , p. (10)

Let

ρ(t) = ln(1/δs j+1) − ln(1/δs j )

ts j+1 − ts j

(t − ts j ) + ln(1/δs j ).

The straight line y = ρ(t) passes through the points (ts j , ln(1/δs j )) and
(ts j+1 , ln(1/δs j+1)) and lies at least below the graph of the function y = θ(t). For
the found values of A and |ξ0|2, we have:

∫

R+

e−2|ξ |2ti dμ̂(ξ) = Ae−2|ξ0|2ti = δ
2(ts j+1−ti )/(ts j+1−ts j )

s j δ
2(ti −ts j )/(ts j+1−ts j )

s j+1

= e−2ρ(ti ) ≤ e−2 ln(1/δi ) = δ2i , i = 1, . . . , p.

These mean that dμ̂(ξ) is a valid measure in the extended problem (6)–(7) and is its
solution. If we substitute dμ̂(ξ) into the functional defined in (6), we get the value of
the problem (6)–(7), which is also the solution to the problem (4)–(5):

∫

R+

e−2|ξ |2τ dμ̂(ξ) = Ae−2|ξ0|2τ = δ
2(ts j+1−τ)/(ts j+1−ts j )

s j δ
2(τ−ts j )/(ts j+1−ts j )

s j+1

= e−2ρ(τ) = e−2θ(τ ).

It means that the value of problem (2)–(3) is equal to S = e−θ(τ ).
(b) Let τ ≥ ts
 . If the graph of the function y = θ(t) is a straight line, then ts
 = t1.

This time let’s put λ̂0 = −1, λ̂s
 = 1, λ̂s j = 0, when j �= 
, dμ̂(ξ) = xγ δs
 δγ (ξ).
The fulfillment of the condition (10) is quite obvious. In addition, for all ξ ∈ R+ the
inequality

f (|ξ |2) = −1 + e−2|ξ |2(ts
 −τ) ≥ 0

and the equality f (0) = 0 take place. Therefore, condition (9) is also met. On the ray
[ts
 ,+∞), the equality θ(t) ≡ ln(1/δs
 ) is fulfilled identically. Therefore ln(1/δ j ) ≤
ln(1/δs
 ), j = 1, . . . , p. From here

∫

R+

e−2|ξ |2t j dμ̂(ξ) = δ2s
 = e−2 ln(1/δs
 )
.
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Thus, the measure dμ̂(ξ) is valid in the problem (6)–(7) and is its solution. The value
of this task is calculated as follows:

∫

R+

e−2|ξ |2τ dμ̂(ξ) = δ2s
 = e−2 ln(1/δs
 ) = e−2θ(t).

This means again that the solution of the problem (2)–(3) is equal to S = e−θ(τ ).
(c) Let τ < t1. For an arbitrary y0 > 0, there is a straight line given by the equation

y = at + b, a > 0, separating the point (τ,−y0) and the set M . At the same time

−aτ − y0 ≥ b ≥ −at j + ln(1/δs j ), j = 1, . . . , p.

Let A = e−2b. Let’s select ξ0 ∈ R+ to provide |ξ0|2 = a. Then

Ae−2|ξ0|2t j ≤ δ2j , j = 1, . . . , p.

It means that the measure dμ̂(ξ) = xγ T ξ0
ξ δγ (ξ) is valid for problem (6)–(7) and

Ae−2|ξ0|2τ ≥ e2y0 . By virtue of arbitrariness of y0 > 0 the value of the problem
(6)–(7), and with it the solution of the problem (2)–(3) is +∞.

In all three cases, for all τ ≥ 0, the error of optimal recovery is estimated from
below E(τ, δ) ≥ e−θ(τ ).

3 The upper estimation of the optimal recovery error

Let τ ≥ t1, and λ̂1, . . . , λ̂p be the Lagrange multipliers from cases (a), (b) for such
values of τ .

Lemma 2 Let for a set of functions y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ
2 (R+))p the

problem

p∑
j=1

λ̂ j‖Pt j u0(·) − y j (·)‖2Lγ
2 (R+)

−→ min, u0(·) ∈ Lγ
2 (R+), (11)

have a solution û0(·) = û0(·, y(·)) Then for any σ1, . . . , σp the value of problem

‖Pτ u0(·) − Pτ û0(·)‖2Lγ
2 (R+)

−→ max, u0(·) ∈ Lγ
2 (R+), (12)

‖Pt j u0(·) − y j (·)‖Lγ
2 (R+) ≤ σ j j = 1, . . . , p, (13)

is not more then the value of problem

‖Pτ u0(·)‖2Lγ
2 (R+)

−→ max, u0(·) ∈ Lγ
2 (R+), (14)
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p∑
j=1

λ̂ j‖Pt j u0(·)‖2Lγ
2 (R+)

≤
p∑

j=1

λ̂ jσ
2
j . (15)

Proof Equality to zero of theFrechet differential of the convex smooth target functional
from (11) at the point û0(·), that is, equality

2
p∑

j=1

λ̂ j

∫

R+

xγ (Pt j û0(x) − y j (x))Pt j u0(x)dx = 0, (16)

is a necessary and sufficient condition for the delivery the minimum to this functional
by a function û0(·). Taking this equality into account, it is easy to get that

p∑
j=1

λ̂ j‖Pt j u0(·) − y j (·)‖2Lγ
2 (R+)

=
p∑

j=1

λ̂ j‖Pt j u0(·) − Pt j û0(·)‖2Lγ
2 (R+)

+
p∑

j=1

λ̂ j‖Pt j û0(·) − y j (·)‖2Lγ
2 (R+)

.

Let the function u0(·) be valid for the problem (12)–(13). Then

p∑
j=1

λ̂ j‖Pt j û0(·) − y j (·)‖2Lγ
2 (R+)

=
p∑

j=1

λ̂ j‖Pt j u0(·) − y j (·)‖2Lγ
2 (R+)

−
p∑

j=1

λ̂ j‖Pt j û0(·) − y j (·)‖2Lγ
2 (R+)

≤
p∑

j=1

λ̂ j‖Pt j u0(·) − y j (·)‖2Lγ
2 (R+)

≤
p∑

j=1

λ̂ jσ j .

It means that the function u0(·) − û0(·) is valid for the problem (14)–(15). The value
of the functional (12) at the function u0(·) is equal to the value of the functional (14).
The proof is completed. �	

Lemma 3 The values of problems (2)–(3) and (14)–(15) with σ j = δ j , j = 1, . . . , p,

are coincide.

Proof Using the Parseval–Plancherel equality, let’s move from the problem (14)–(15)
to the problem

∫

R+

e−2|ξ |2τ dμ(ξ) −→ max, (17)
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p∑
j=1

λ̂ j

∫

R+

e−2|ξ |2t j dμ(ξ) ≤
p∑

j=1

λ̂ jδ
2
j , (18)

where

dμ(ξ) = 1

22ν	2(ν + 1)
|Fγ u0(ξ)|2ξ2ν+1 dξ ≥ 0.

The Lagrange function of this problem has the form

L1(dμ(·), ν) = ν0

∫

R+

e−2|ξ |2τ dμ(ξ)

+ν1

⎛
⎜⎝

p∑
j=1

λ̂ j

∫

R+

e−2|ξ |2t j dμ(ξ) −
p∑

j=1

λ̂ jδ
2
j

⎞
⎟⎠ ,

where the set ν of the Lagrange multipliers now has the form ν = (ν0, ν1). From
the fact that the measure dμ̂(ξ), which is the solution to the problem (14)–(15), is
valid in this problem, it follows, that it is also valid in the problem (17)–(18). Let
ν0 = ν̂0 = −1, ν1 = ν̂1 = 1. Then

min
dμ(·)≥0

L1(dμ(·), ν̂) = L1(dμ̂(·), ν̂)

= L(dμ̂(·), λ̂) = min
dμ(·)≥0

L(dμ(·), λ̂), (19)

where ν̂ = (̂ν0, ν̂1) and with respect to (10), we have

ν̂1

⎛
⎜⎝

p∑
j=1

λ̂ j

∫

R+

e−2|ξ |2t j dμ̂(ξ) −
p∑

j=1

λ̂ jδ
2
j

⎞
⎟⎠ = 0. (20)

It means that dμ̂(ξ) is the solution to the problem (17)–(18). Therefore the value of
this problem is equal to the value of the problem (17)–(18). It follows that the squared
value of the problem (6)– (7) is equal to the value of the problem (14)–(15). Therefore
the values of the problems (6)–(7) and (14)–(15) are coincide. The lemma is proved.

�	
The main result is the next

Theorem 1 For any τ > 0 the equality

E(τ, δ) = e−θ(τ )

take place.
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1. If 0 ≤ τ < t1, then θ(τ ) = −∞.
2. If τ = ts j , j = 1, . . . , 
 then the method m̂, defined by the formula m̂(y(·))(·) =

ys j (·), is optimal.
3. If 
 ≥ 2, τ ∈ (ts j , ts j+1), then the method m̂, defined by the formula

m̂(y(·))(·) = (�s j ∗ ys j )γ (·) + (�s j+1 ∗ ys j+1)γ (·), (21)

where �s j (·), �s j+1(·) are functions whose Fourier–Bessel images have the form

Fγ �s j (ξ) = (ts j+1 − τ)δ2s j+1
e−|ξ |2(τ−ts j )

(ts j+1 − τ)δ2s j+1
+ (τ − ts j )δ

2
s j

e−2|ξ |2(ts j+1−ts j )
, (22)

Fγ �s j+1(ξ) = (τ − ts j )δ
2
s j

e−|ξ |2(τ+ts j+1−2ts j )

(ts j+1 − τ)δ2s j+1
+ (τ − ts j )δ

2
s j

e−2|ξ |2(ts j+1−ts j )
, (23)

is optimal.
4. If τ > ts
 , then the method m̂, defined by the formula m̂(y(·))(·) = Pτ−ts
 ys
 (·),

is optimal.

Proof Let τ ∈ [ts j , ts j+1). It was shown above that it could be possible to select the
set of Lagrange’s multipliers in which only the multipliers λ̂s j and λ̂s j+1 are not equal
to zero. Therefore the problem (11) takes the form

λ̂s j ‖Pts j
u0(·) − ys j (·)‖Lγ

2 (R+) + λ̂s j+1‖Pts j+1
u0(·) − ys j+1(·)‖Lγ

2 (R+) −→ min,

u0(·) ∈ Lγ
2 (R+).

Let û0(·) = û0(·, y(·)) be the solution to this problem. Then condition (16) is fulfilled.
In the Fourier–Bessel images, this condition can be written as

j+1∑
κ= j

∫

R+

ξγ (e−|ξ |2tsκ Fγ û0(ξ) − Fγ ysκ (ξ))e−|ξ |2tsκ Fγ u0(ξ) dξ = 0. (24)

Let

Fγ û0(ξ) = λ̂s j e
−|ξ |2ts j Fγ ys j + λ̂s j+1e−|ξ |2ts j+1 Fγ ys j+1

λ̂s j e
−2|ξ |2ts j + λ̂s j+1e−2|ξ |2ts j+1

. (25)

Then equality (24) holds for all u0(·) ∈ Lγ
2 (R+). Let for a set y(·) =

(y1(·), . . . , yp(·)) ∈ (Lγ
2 (R+))p the functions Fγ y j (·), j = 1, . . . , p, finitely

supported. Then the function (25) belongs to the space Lγ
2 (R+). Then function

û0(·) = û0(·, y(·)), defined by the formula (25), is also belonging to the space
Lγ
2 (R+) and is the solution to the problem (11). Finite functions are dense in Lγ

2 (R+).
Therefore, functions with finite Fourier–Bessel’s images are dense in Lγ

2 (R+).
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Let functions ũ0(·) ∈ Lγ
2 (R+), y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ

2 (R+))p satisfy the
inequalities

‖Pts j
ũ0(·) − ys j (·)‖Lγ

2 (R+) ≤ δ j , j = 1, . . . , p.

Let’s choose a sequence y(k)(·) = (y(k)
1 (·), . . . , y(k)

p (·)) ∈ (Lγ
2 (R+))p, k ∈ N for

which functions Fγ y(k)
j (·), j = 1, . . . , p, are compactly supported and ‖y j (·) −

y(k)
j (·)‖Lγ

2 (R+) ≤ 1/k, j = 1, . . . , p, k ∈ N. Let’s fix the number k ∈ N. There exists

the solution û0(·, y(k)(·)) to the problem (11). Due to inequalities

‖Pt j ũ0(·) − y(k)
j (·)‖Lγ

2 (R+)

≤ ‖Pt j ũ0(·) − y j (·)‖Lγ
2 (R+) + ‖y j (·) − y(k)

j (·)‖Lγ
2 (R+) ≤δ j + 1/k, j =1, . . . , p,

the function ũ0(·) is valid in problem (12)–(13) with σ j = σ j (k) = δ j + 1/k. Let

a(k) =
√√√√ p∑

j=1

λ̂ jσ
2
j (k)

/ p∑
j=1

λ̂ jδ
2
j .

Due to Lemma2 the value of the problem (12)–(13) does not exceed the value of the
problem (14)–(15).

Let’s make the replacing of the function u0(·) = a(k)v0(·) for the problem (14)–
(15). This problem will take the form

a(k)‖Pτ v0(·) − Pτ û0(·)‖2Lγ
2 (R+)

−→ max, u0(·) ∈ Lγ
2 (R+), (26)

p∑
j=1

λ̂ j‖Pt j v0(·)‖2Lγ
2 (R+)

≤
p∑

j=1

λ̂ jσ
2
j . (27)

The value of the problem (26)–(27) coincides with the value of the problem (2)–(3),
multiplied by a(k), and it is equal to a(k)e−θ(τ ). Since the function ũ0(·) is valid in
the problem (12)–(13), we have

‖Pτ ũ0(·) − Pτ û0(·, y(k)(·))‖Lγ
2 (R+) ≤ a(k)e−θ(τ ). (28)

Let �s j (·), �s j+1(·) be functions whose Fourier–Bessel images have the form
according to (22)–(23):

Fγ �s j (ξ) = (ts j+1 − τ)δ2s j+1
e−|ξ |2(τ−ts j )

(ts j+1 − τ)δ2s j+1
+ (τ − ts j )δ

2
s j

e−2|ξ |2(ts j+1−ts j )
,
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Fγ �s j+1(ξ) = (τ − ts j )δ
2
s j

e−|ξ |2(τ+ts j+1−2ts j )

(ts j+1 − τ)δ2s j+1
+ (τ − ts j )δ

2
s j

e−2|ξ |2(ts j+1−ts j )
.

Let τ ∈ (ts j , ts j+1). Fourier–Bessel images (22) and (23) of functions �s j (·) and
�s j+1(·) belong to space of even infinitely differentiable rapidly decreasing functions.
Therefore, the functions �s j (·) and �s j+1(·) belong to this space. In the case under
consideration, we define a recovery method using generalized convolution according
to (21):

m̂(y(·))(·) = (�s j ∗ ys j )γ (·) + (�s j+1 ∗ ys j+1)γ (·).

Then

Fγ m̂(y(k)(·))(ξ) = Fγ �s j (ξ)Fγ y(k)
s j

(ξ) + Fγ �s j+1(ξ)Fγ y(k)
s j+1

(ξ)

= e−|ξ |2τ Fγ ũ0(·, y(k)(·))(ξ). (29)

It means that
m̂(y(k)(·))(·) = Pτ ũ0(·, y(k)(·))(·). (30)

If τ = ts j , including the case of τ = ts
 , then

Fγ m̂(y(k)(·))(ξ) = Fγ y(k)
s j

(ξ)

= e−|ξ |2τ Fγ ũ0(·, y(k)(·))(ξ) = Fγ (Pτ ũ0(·, y(k)(·)))(ξ),

so, in this case (30) is also true.
Let again the functions ũ0(·) ∈ Lγ

2 (R+), y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ
2 (R+))p

satisfy the inequalities

‖Pts j
ũ0(·) − ys j (·)‖Lγ

2 (R+) ≤ δ j , j = 1, . . . , p.

Then for any k ∈ N

‖Pτ ũ0(·) − m̂ (y(·))(·)‖Lγ
2 (R+)

≤ ‖Pτ ũ0(·) − m̂ (y(k)(·))(·)‖Lγ
2 (R+)

+‖m̂ (y(k)(·))(·) − m̂ (y(·))(·)‖Lγ
2 (R+)

≤ ‖Pτ ũ0(·) − Pτ ũ0(·, y(k)(·))‖Lγ
2 (R+)

+‖m̂ (y(k)(·))(·) − m̂ (y(·))(·)‖Lγ
2 (R+)

≤ a(k)e−θ(τ ) + ‖m̂ (y(k)(·) − y(·))(·)‖Lγ
2 (R+) .
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Passing in this inequality to the limit at k → ∞, we get

‖Pτ ũ0(·) − m̂ (y(·))(·)‖Lγ
2 (R+) ≤ e−θ(τ ).

In this inequality, let’s move to the upper edge over all ũ0(·) ∈ Lγ
2 (R+) and y(·) =

(y1(·), . . . , yp(·)) ∈ (Lγ
2 (R+))p, for which ‖Pts j

ũ0(·) − ys j (·)‖Lγ
2 (R+) ≤ δ j , j =

1, . . . , p. Then we get e(τ, δ, m̂) ≤ e−θ(τ ). Given the lower bound proved earlier, we
obtain

e−θ(τ ) ≤ E(τ, δ) ≤ e(τ, δ, m̂) ≤ e−θ(τ ),

from which it follows that E(τ, δ) = e−θ(τ ) and that m̂ is the optimal method.
Let τ > ts
 . Then λ̂s
 = 1, the remaining Lagrange multipliers are equal to zero.

The problem (11) will take a form

‖Pts
 ũ0(·) − ys
 (·)‖2Lγ
2 (R+)

�⇒ min .

Let for a given set y(·) = (y1(·), . . . , yp(·)) ∈ (Lγ
2 (R+))p functions Fγ y j , j =

1, . . . , p, be finitely supported. Then solution ũ0(·) = ũ0(·, y(·)) to this problem

exists and Fγ ũ0(ξ) = e|ξ |2ts
 Fγ ys
 . The inequality (28) in this case is proved as
before. Now we define the method m̂ by equality

m̂(y(·))(·) = Pτ−ts
 . (31)

Then

Fγ m̂(y(k)(·))(ξ) = e−|ξ |2(τ−ts
 )Fγ ys
 (ξ) = e−|ξ |2τ Fγ û0(·, y(k)(·)).

It means again that

m̂(y(k)(·))(·) = Pτ û0(·, y(k)(·)).

Further reasoning repeats the reasoning in the previous case. The proof is finished. �	
Acknowledgements All authors declare that they have no conflicts of interest.

Appendix A: Basic concepts, designations and initial facts

We need to use some notations and facts from the weighted functional Kipriyanov
spaces theory [5]. We will present the facts we need, as in the work [14, 15]

Let

RN+ = {x = (x ′, x ′′), x ′=(x1, . . . , xn), x ′′=(xn+1, . . . , xN ), x1≥0, . . . , xn≥0},
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where 1 ≤ n ≤ N − 1.
Let’s denote by �+ a domain adjacent to the hyper-planes x1 = 0, . . . , xn = 0.

The boundary of �+ consists of two parts: 	+ in RN+ and 	0 in the hyper-planes
x1 = 0, . . . , xn = 0.

Let �+
δ be an interior sub-domain of �+ such that all its points are located at a

distance at least δ from the part of the boundary 	+ of the domain �+. Then �+
δ is

called a symmetrically interior (s-interior) sub-domain of the domain �+.
Let � ⊆ RN be a union of �+ and �− obtained from �+ by symmetry with

respect to x ′ = 0. We denote by Cl
ev(�

+) the linear space of functions possessing the
following properties.

1. Every function ϕ ∈ Cl
ev(�

+), and all its partial derivatives of order up to l, are
continuous in �+. If a function ϕ has continuous partial derivatives of any order
in �+, we set l = ∞.

2. Even continuations of a function ϕ ∈ Cl
ev(�

+) with respect to x ′ remain in the
class Cl(�).

Following [5], we say that functions admitting smooth even continuation with
respect to the corresponding variables are even with respect to these variables.

We denote by Cl
ev,0(�

+) the linear space of functions ϕ ∈ Cl
ev(�

+) vanishing
outside some s-interior sub-domain of �+. Let γ = (γ1, . . . , γn), (x ′)γ =∏n

i=1 xγi
i ,

where γi > 0 are fixed real numbers. We denote by Lγ
p(�+) a closure of Cev(�

+) by
the norm

‖ f ‖Lγ
p(�+) =

⎡
⎣
∫

�+
| f (x)|p (x ′)γ dx

⎤
⎦
1/p

.

If �+ and RN+ coincide, we can omit the symbol RN+ and write Lγ
p .

We denote by Lγ
p,loc(�

+) the linear space of functions such that

∫

�+
δ

| f (x)|p (x ′)γ dx < +∞

for any s-interior sub-domain �+
δ of the domain �+.

LetDev(�
+) (Eev(�

+)) be the set of all restrictions of even functions with respect
to x ′ in the space D(�) (E(�)) to the set �+. The topology in Dev(�

+) is induced
by the topology in D(�) (E(�)). By definition, Dev = Dev(RN+ ). We denote by Sev

the linear space of functions ϕ(x) ∈ C∞
ev (RN+ ) that, together with all their deriva-

tives, decrease faster than any power of |x |−1 as |x | → ∞. The topology in Sev is
introduced in the same way as in the space S (see [4–8, 10, 12, 13, 16, 17]). The
dual of Dev(�

+) (Eev(�
+),Sev) equipped with the weak topology is denoted by

D′
ev(�

+) (E ′
ev(�

+),S ′
ev). The following relations hold: Dev ⊂ Sev ⊂ S ′

ev ⊂ D′
ev .

In all three cases, the action of a distribution f on a test function ϕ is denoted by

〈 f (x), ϕ(x)〉γ = 〈 f (x), ϕ(x)〉 . (A1)
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We identify each function f (x) ∈ Lγ

1,loc(�
+) with the functional f ∈ D′

ev(�
+)

called regular, acting by the formula

〈 f (x), ϕ(x)〉 =
∫

�+
f (x)ϕ(x) (x ′)γ dx . (A2)

The remaining functionals inD′
ev(�

+) are said to be singular. Although (A2) does
not spread to singular functionals, following [1], we use designation (A2) in addition
to (A1) both for regular and singular functionals.

As an example of a singular functional in D′
ev(�

+) we can recall the weighted
δ–function δγ (x) that is the functional defined by the equality 〈δγ (x) , ϕ〉γ =ϕ(0)

A mixed generalized shift is defined by

f → (T y
x f )(x) =

n∏
i=1

T yi
xi f (x ′, x ′′ − y′′),

where each of the generalized shifts T yi
xi is defined by (see [9])

(T yi
xi f )(x) = 	(

γi +1
2 )√

π 	
( γi
2

)

×
∫ π

0
f

(
x1, . . . , xi−1,

√
x2i + y2i − 2xi yi cosα, xi+1, . . . , xN

)
sinγi −1 α dα,

i = 1, . . . , n,

and
∏n

k=1 T yk
xk is understood as the superposition of operators.

The generalized convolution of functions f , g ∈ Lγ
2 (RN+ ) is defined by

( f ∗ g)γ (x) =
∫

RN+

f (y)T y
x g(x)(y′)γ dy.

If f ∈ D′
ev, g ∈ E ′

ev , then the generalized convolution ( f ∗g)γ of such distributions
is defined by

〈( f ∗ g)γ (x), ϕ(x)〉γ = 〈 f (y), 〈g(x), T y
x ϕ(x)〉γ 〉γ , ϕ(x) ∈ Dev.

The direct and inverse mixed Fourier–Bessel transforms are introduced by

Fγ [ϕ(x ′, x ′′)](ξ) =
∫

RN+

ϕ(x)

n∏
k=1

jνk (ξk xk)e
−i x ′′·ξ ′′

(x ′)γ dx

= (2π)N−n22|ν|
n∏

k=1

	2(νk + 1)F−1
γ [ψ(x ′,−x ′′)](ξ),

F−1
γ [ψ](x) = 1

(2π)N−n22|ν|∏n
k=1 	2(νk + 1)
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×
∫

RN+

ψ(ξ)

n∏
k=1

jνk (ξk xk)e
ix ′′·ξ ′′

(ξ ′)γ dξ

= 1

(2π)N−n22|ν|∏n
k=1 	2(νk + 1)

Fγ [ψ(ξ ′,−ξ ′′)](x),

where

x ′ · ξ ′ = x1ξ1 + . . . + xnξn, x ′′ · ξ ′′ = xn+1ξn+1 + . . . + xN ξN ,

|ν| = ν1 + . . . + νn,

jνk (zk) = 2νk 	(νk + 1)

zνk
k

Jνk (zk)

= 	(νk + 1)
∞∑

m=1

(−1)m z2m
k

22mm!	(m + νk + 1)
,

	(·) is the Euler gamma-function, Jνk (·) is the Bessel function of the first kind, νk =
(γk − 1)/2, k = 1, . . . , n.

Theorem 2 [6] The following Parseval–Plancherel formula holds for the Fourier–
Bessel transform:

‖ϕ‖Lγ
2

= (2π)N−n22|ν|
n∏

k=1

	2(νk + 1)‖ϕ̂‖Lγ
2
, ϕ̂ = Fγ [ϕ].

The Fourier–Bessel transform of a distribution f is defined by the formula

〈
Fγ [ f ], ϕ〉

γ
= 〈 f , Fγ [ϕ]〉

γ
,

where ϕ ∈ S.
The Paley–Wiener–Schwartz theorem for the Fourier transform is well known (see

[3]). A generalization of this theorem to the case of the Fourier–Bessel transform can
be found in [5] (also see [8]). We formulate this result in a convenient form.

Theorem 3 (The Paley–Wiener–Schwartz theorem for the Fourier–Bessel transform).

1. (a counterpart of the Paley–Wiener–Schwartz theorem). An entire analytic function
�(ζ) = �(ζ ′, ζ ′′) = �(ζ1, . . . , ζn, ζn+1, . . . , ζN ) in CN , even with respect to
ζ ′ = (ζ1, . . . , ζn), is the Fourier–Bessel transform of some compactly supported
distribution with support in the set GC,a = {x ∈ RN : |xk | ≤ Rk, k = 1, . . . , N }
if and only if

|�(ζ)| ≤ C (1 + |ζ |)ℵ exp

(
N∑

l=1

al |I m ζl |
)

, ζ ∈ CN , (A3)

where C,ℵ are some positive constants.
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2. (a counterpart of the Paley–Wiener theorem). An entire analytic function �(ζ) in
CN is the Fourier–Bessel transform of some function u ∈ C∞

0 (RN ) with support
in the set GC,a = {x ∈ RN : |xk | ≤ Rk, k = 1, . . . , N } if and only if for every
ℵ = 0, 1, 2, . . . , there is a constant Cℵ such that

|�(ζ)| ≤ Cℵ (1 + |ζ |)−ℵ exp

(
N∑

l=1

al |I m ζl |
)

, ζ ∈ CN . (A4)

Let β = (β ′, β ′′) be a multi-index with nonnegative integer components β ′ =
(β1, β2, . . . , βn), β ′′ = (βn+1, . . . , βN ). We denote by Bβ ′

x ′ the operator defined by

Bβ ′
x ′ u = Bβ1

x1 Bβ2
x2 . . . Bβn

xn
u,

where Bxi = Bxi ,γi is the Bessel operator acting with respect to xi by the formula

Bxi u = Bxi ,γi u = ∂2u

∂x2i
+ γi

xi

∂u

∂xi
= x−γi

i
∂

∂xi

(
xγi

i
∂u

∂xi

)
.

We denote by Dβ ′′
x ′′ the operator acting by

Dβ ′′
x ′′ f (x ′, x ′′) = ∂ |β ′′| f (x ′, x ′′)

∂xβn+1
n+1 . . . xβN

N

,

where |β ′′| = βn+1 + · · · + βN .

A function of the form Bβ ′
x ′ Dβ ′′

x ′′ f (x ′, x ′′) is referred to as the mixed B-derivative of
f (x ′, x ′′).
We consider the polynomial

Q(ζ ) = P(−ζ 2
1 , . . . ,−ζ 2

n ,−iζn+1, . . . ,−iζN ) = P(−ζ 2
1 , . . . ,−ζ 2

n , (−iζ ′′))
=

∑
2|β ′|+|β ′′|≤m

bβ(−ζ 2
1 )β1 . . . (−ζ 2

n )βn (−iζ ′′)β ′′
.

We define the operator P = P(Bx ′ , Dx ′′)with constant coefficients and the symbol
P(−ζ 2

1 , . . . ,−ζ 2
n ,−iζn+1, . . . ,−iζN ) by the formula

Pu =
∑

2|β ′|+|β ′′|≤m

bβ Bβ ′
x ′ Dβ ′′

x ′′ u. (A5)

In particular, the B-elliptic operator �B is defined by the formula (see [5])

�Bu =
n∑

k=1

(
∂2u

∂x2k
+ γk

xk

∂u

∂xk

)
+

N∑
k=n+1

∂2u

∂x2k
.
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Taking the Fourier–Bessel transform on both sides of (A5), we obtain the identity

Fγ [Pu] =
∑

2|β ′|+|β ′′|≤m

bβ Fγ [Bβ ′
x ′ Dβ ′′

x ′′ u(x ′, x ′′)](ζ ′, ζ ′′)

= P(−ζ 2
1 , . . . ,−ζ 2

n ,−iζ ′′)Fγ [u](ζ ′, ζ ′′).

Theorem 4 [15] Let f ∈ E ′
ev(R

N+ ). The equation

Pu = f (A6)

has a solution u(x ′, x ′′) ∈ E ′
ev(R

N+ ) if and only if

Fγ [ f ](ζ ) = P(−ζ 2
1 , . . . ,−ζ 2

n ,−iζ ′′)ψ̂(ζ ),

where ψ̂(ζ ) is an entire analytic function in CN , even with respect to variables ζ ′, in
other words, when the Fourier–Bessel transform of the right side of Eq. (A6) is divided
"entirely" by the operator symbol P.
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