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Simple Summary: In the modern world, natural ecosystems are subjected to significant anthro-
pogenic and technogenic stress. As a result of industrial processes, pollutants of various chemical
structures are discharged into water and soil ecosystems. Many bacteria are able to utilize pollu-
tants, thus contributing to the remediation of polluted ecosystems. The Gordonia rubripertincta strain
112 is interesting as a destroyer of aromatic and aliphatic compounds. The study of the molecu-
lar mechanisms of its functioning will allow us to use it effectively in green technologies in the
future. We have shown that the strain is able to quickly cope with toxic pollutants without stress and
growth inhibition.

Abstract: The application of Gordonia strains in biotechnologies of environmental purification as
degraders of pollutants of different chemical structures is an interesting research topic. The strain
Gordonia rubripertincta 112 (IEGM112) is capable of utilizing diesel fuel, alkanes, and aromatic com-
pounds. The aim of this work was to study the potential of G. rubripertincta 112 as a degrader of
aromatic and aliphatic compounds and analyze its complete genome in comparison with other known
G. rubripertincta strains. The genome had a total length of 5.28 Mb and contained 4861 genes in total,
of which 4799 were coding sequences (CDS). The genome contained 62 RNA genes in total, of which
50 were tRNAs, three were ncRNAs, and nine were rRNAs. The strain bears plasmid elements
with a total length of 189,570 nucleotides (plasmid p1517). The strain can utilize 10.79 ± 1.17% of
hexadecane and 16.14 ± 0.16% of decane over 3 days of cultivation. In the genome of the strain, we
have found metabolic pathways of alkane (cytochrome P450 hydroxylases) and catechol (ortho- and
meta-pathways) degradation. These results will help us to further approach the fundamental study
of the processes occurring in the strain cells and to enrich our knowledge of the catabolic capabilities
of G. rubripertincta.

Keywords: Gordonia rubripertincta; genome assembly; biodegradation; catechol; aromatic compounds;
alkanes

1. Introduction

Actinobacteria of the genus Gordonia are a significant part of microbial communities
formed in various ecosystems, such as soils, waters, and sediments [1–5]. It can be said
that due to their amazing metabolic flexibility, Gordonia strains are distributed everywhere.
Representatives of the genus Gordonia have been isolated from the soil of the cold desert in
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India (G. terrae, EU333873.1), the sand of Namibia (G. namibiensis, [6]), and even from the
intestinal tract of Periplaneta americana (G. terrae, [7]). Species of Gordonia are resistant to
desiccation [8] and the metal content in the habitat [9], and they are capable of growing in
saline media [10].

Gordonia strains are interesting for application in biotechnologies of environmental pu-
rification as degraders of pollutants of different chemical structures, such as alkanes [11–14],
aromatic hydrocarbons [15,16] and their derivatives [17,18], thiophenes [19–21], and ph-
thalates [22–26]. The type strains of several Gordonia species were isolated from soils
contaminated with thiophenes (G. amicalis [27]), tar (G. alkanivorans [28]), from automobile
tires (G. polyisoprenivorans [29], G. westfalica [30]), oil-producing wells (G. paraffinivorans [31]),
and activated sludge [23].

Little is known about the metabolic capabilities of Gordonia rubripertincta representa-
tives. The G. rubripertincta strain CWB2 is a promising producer of siderophores [32–36]
and is capable of utilizing styrene [37–39]. A strain of the G. rubripertincta SD5 strain has
the ability to utilize di-(2-ethylhexyl) phthalate [40]. The ability of G. rubripertincta to utilize
alkanes has been shown only by Trögl et al. [41] who used the CWB2 strain as an example.
The authors studied the microbial degradation of a C10-C40 mixture of alkanes in a model
soil experiment. Thus, presently, the potential of G. rubripertincta strains as degraders of
various pollutants has been very poorly studied.

The strain Gordonia rubripertincta 112 (IEGM112) was isolated in 1980 from crude oil-
contaminated soil in the territory of Ukraine. The aim of this work is to study the potential
of the G. rubripertincta strain 112 as a degrader of aromatic and aliphatic compounds and
analyze its genome in comparison with other known G. rubripertincta strains.

The catabolism of alkanes in the representatives of the genus Gordonia can be proceeded
by both terminal and subterminal oxidation. During terminal oxidation, alcohol, aldehyde,
and acid are sequentially formed from alkanes. Thus, Liu et al. [12] observed the formation
of hexadecanol and hexadecanoic acid in the cells of the Gordonia sihwaniensis strain utilizing
hexadecane. However, the authors also recorded the presence of hexadecene in the cells,
which suggested the possibility of an alternative pathway of alkane catabolism.

The subterminal oxidation of alkanes was observed by Kotani et al. [42] in Gordonia
sp. TY-5. The strain oxidized propane to 2-propanol. Then, 2-propanol was converted to
acetone, and then under the control of Baeyer–Villiger monooxygenase, it was transformed
into an ester [43]. Examples of degradation of longer alkanes by Gordonia strains through
subterminal oxidation are not currently available in the literature.

It has been reported in the literature that Gordonia strains use two genetic systems
for terminal alkane oxidation: alkB for long and cytochrome P450 (CYP153) for short
ones [12,13,44]. The alkB genetic system is usually represented by a single copy, while
CYP153 can have several copies. For example, we previously showed that the Gordonia
amicalis 1D strain contains one copy of alkB and two copies of CYP153, which allows it to
utilize alkanes with a length range from C10 to C36 [45].

Among Gordonia, it is also known that there may be no alkB genes at all. The entire
process of alkane catabolism in such strains is controlled by the alkane monooxygenases
of the CYP153 family. For example, this is a characteristic of G. alkanivorans strains [20]. It
is now known that both alkB and CYP153 genes are involved in alkane catabolism with a
medium chain length. In actinobacteria, the alkB system controls the oxidation of C16–C40
alkanes, while CYP153 oxidizes alkanes with a shorter chain (shorter than C14) [46,47].

The ability to utilize aromatic compounds (naphthalene and its derivatives), unlike
alkanes, is infrequent in Gordonia. Lin et al. [16] described the organization of an operon
involved in naphthalene catabolism. One of the strains in our laboratory collection, G. poly-
isoprenivorans 135 [15], is also capable of utilizing naphthalene and its derivatives. The
organization of the naphthalene operon in strain 135 is different from the one of Gordonia
sp. strain CC-NAPH129-6 in the work of Lin et al. Catechol degradation among Gordonia
was previously observed only in G. polyisoprenivorans [18].
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In this work, we plan to study the organization of the genetic systems of alkane
and catechol catabolism in the G. rubripertincta strain 112 and compare them with the
organization of similar systems in the genomes of other Gordonia strains. These results will
help us to further approach the fundamental study of the processes occurring in the strain
cells and to enrich our knowledge of the catabolic capabilities of G. rubripertincta.

2. Materials and Methods
2.1. Bacterial Strain

The strain Gordonia rubripertincta 112 (IEGM112) can be found in the IEGM Regional
Specialized Collection of Alkanotrophic Microorganisms (Perm, Russia) and in the collec-
tion of the laboratory of the physiology of microorganisms IBPM RAS (Pushchino, Moscow
Region, Russia).

2.2. Chemicals

High-purity-grade (>98%) catechol, dichloromethane, decane, and hexadecane were
obtained from Sigma-Aldrich (Burlington, MA, USA). All the other reagents were of
analytical grade.

2.3. Growth Media and Conditions

The strain G. rubripertincta 112 was grown at 27 ◦C in a liquid mineral medium
with decane (7.5 mL/L), hexadecane (7.5 mL/L), catechol (0.1 g/L), benzoate (1 g/L), or
potassium acetate (10% w/w) as the sole carbon and energy source on an orbital shaker at
180 rpm.

To obtain the inoculum, the strain was grown in a mineral medium with acetate
for 20 h. The biomass was precipitated and washed with sterile distilled water before
inoculating it into experimental flasks. The resulting precipitate was resuspended in a
mineral medium until a concentration of 108 CFU/mL was reached using a turbidity
standard. The inoculum was added to the experimental flasks to the final concentration of
106 CFU/mL.

The following mineral medium was used in this study: K2HPO4—8.71 g/L, 5 M
NH4Cl solution—1 mL/L, 0.1 M Na2SO4 solution—1 mL/L, 62 mM MgCl2 solution—
1 mL/L, 1 mM CaCl2 solution—1 mL/L, 0.005 mM (NH4)6Mo7O24 × 4H2O solution,
micronutrients—1 mL (micronutrient composition in g/L: ZnO—0.41 g, FeCl3 × 6H2O—
5.4 g, MnCl2 × 4H2O—2 g, CuCl2 × 2H2O—0.17 g, CoCl2 × 6H2O—0.48 g, H3BO3—0.06 g),
pH 7.0.

Lysogeny broth (LB) medium [48], consisting of (per liter of distilled water) 10 g of
tryptone, 5 g of yeast extract, 5 g of NaCl, and 15 g of agar (PanReac, Barcelona, Spain), was
used to obtain individual colonies and assess bacterial abundance.

To evaluate the efficiency of aliphatic hydrocarbon degradation by G. rubripertincta 112,
the bacterium was cultured at 27 ◦C in a liquid mineral medium with decane or hexadecane
for 3 days. All the experiments were performed in three independent biological replicates.

2.4. Determination of Hydrocarbon Concentration

The samples were analyzed using the equipment of the Collective Use Center, Soil
Science Faculty, and Lomonosov Moscow State University. Decane or hexadecane was
extracted from the culture medium with dichloromethane (1:2, v/v). To stop all biological
processes, pre-acidification of the culture medium with sulfuric acid to pH 2 was performed.
Decane and hexadecane were measured using a gas chromatography system (Agilent 6890,
Agilent Technologies, Santa Clara, CA, USA) equipped with a flame ionization detector. The
chromatographic column was DB-1 (30 m× 0.25 mm id, 0.25 µm). The oven temperature
program was from 40 ◦C with an increase of 15 ◦C/min and 11.7 ◦C/min for decane and
hexadecane, respectively.

Absolute calibration with analytical standards was used for quantitation. The correla-
tion coefficient was 0.98. The validity of the results was confirmed using one-factor analysis
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of variance (ANOVA), which was p = 0.05. The samples were diluted 100-fold before the
assay was utilized. All of the results were derived from five independent replicates.

The degree of decane/hexadecane biodegradation (D) was calculated using the fol-
lowing formula:

D = (C0 − Ci)/C0 × 100 [%],

where C0 is the concentration of hydrocarbon in the experiment without microorgan-
isms (abiotic control), and Ci is the concentration of hydrocarbon in the experiment with
microorganisms after 72 h of growth.

2.5. Genome Sequencing and Analysis

Genomic DNA was isolated from a fresh culture biomass (a colony) of Gordonia
rubripertincta 112 grown on LB agar using a DNeasy Blood & Tissue Kit (QIAGEN, 69506).
Sequencing was performed on an MGI platform (DNBSEQ-G400) using the DNBSEQ-
G400RS High-throughput Sequencing Set (FCL PE150) (2 × 150 bp). A paired-end li-
brary was prepared with the MGIEasy Universal DNA Library Prep Set. We obtained
11,794,002 paired-end reads.

The raw reads were filtered using Trimmomatic v. 0.39 [49] and assembled using
SPAdes v. 3.15.4 [50]. Contigs shorter than 500 bp were removed. We have obtained 87
contigs (Table 1).

Table 1. Metrics of the genome assembly of the strain G. rubripertincta 112.

Parameter Length

Genome size, bp 5,281,129

The longest contig, bp 845,133

The shortest contig, bp 502

N50, bp 233,583

N75, bp 130,856

N90, bp 59,209

The ANI value was calculated using the EzBioCloud ANI Calculator [51]. DNA-DNA
hybridization (DDH) was calculated using the Genome-to-Genome Distance Calculator
(GGDC) [52]. The genome was annotated with the NCBI Prokaryotic Genome Annotation
Pipeline (PGAP) version 4.6 [53], Prokka [54], and RAST [55]. The genome contained
4861 genes in total, of which 4799 were coding sequences (CDS). Out of a total of 4799 CDS,
4715 were CDS with protein and 84 were without protein (pseudogenes). The genome
contained 62 RNA genes in total, of which 50 were tRNAs, 3 ncRNAs, and 9 rRNAs.
The genome data can be accessed in the GenBank database under the accession number
JARUXG000000000 (BioProject PRJNA953757, BioSample SAMN34123077).

The whole-genome tree was built using the TYGS web service [https://tygs.dsmz.de/
(accessed on 1 May 2023)]. TYGS uses FastME 2.1.4 [56] to build the trees from Genome
BLAST Distance Phylogeny (GBDP) distances calculated from genome sequences [57] and
the “greedy-with-trimming” algorithm [58]. Alignment maps were built using Mauve
ver. 2.4.0, (21 December 2014) [59]. For pangenome analysis and unique genes search,
we used OrthoVenn [60]. The functional annotation of the genome was carried out using
KEGG [61]. The search for clusters of secondary metabolite production was carried out
using Antismash [62]. CheckM v. 1.2.2 [63] was used for assessing the quality of genomes.
Metabolic pathways were drawn using ChemDraw Ultra ver. 12.0.2.1076.

https://tygs.dsmz.de/
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3. Results and Discussion
3.1. Identification of Strain 112

On agarized media, strain 112 forms small round colonies of a pink–orange color
(Figure S1). The strain can grow within a temperature range from 10 to 40 ◦C (optimum
28–30 ◦C) and within a pH range from 6.3 to 8.4 (optimum 7.3). Strain 112 was originally
assigned to the genus Rhodococcus [64], but it was later reidentified as presumably belonging
to the species Gordonia rubripertincta. For a more reliable identification, we calculated the
ANI and DDH parameters between the genomes of strain 112 and the G. rubripertincta strain
ATCC14352. In addition, we compared the genome of strain 112 with other G. rubripertincta
strains from the Genbank database.

As of now (April 2023), there are eight G. rubripertincta genomes in the Genbank database,
including strain 112 (https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/12310/
(accessed on 30 April 2023)) (Table 2).

Table 2. Comparison of G. rubripertincta genomes deposited in the Genbank database.

GenBank Accession
Number Strain Name Chromosome Size, Mb Plasmid Size, kb

JARUXG000000000 Gordonia rubripertincta 112 5.09 189

JAAXPB000000000.1 Gordonia rubripertincta
ATCC14352T 5.70 -

JAFFGU000000000.1 Gordonia rubripertincta
BP-295 5.15 -

CP022580.1 Gordonia rubripertincta
CWB2 5.23 105

The sequences which were designated to be ATCC14352 (JAAXPB000000000.1) and
NBRC101908 (BAHB00000000.1) belong to the same strain, the type strain of G. rubripertincta.
For a further work, we took the ATCC14352 (JAAXPB000000000.1) genome (Table 3). The
genome of strain IEGM1388 (JAPWIE000000000.1) has a very low DDH value with the
genome of the G. rubripertincta strain ATCC14352 (14.60%), which led us to assume that
strain IEGM1388 does not belong to G. rubripertincta at all. A BLAST search for 16S rRNA
and gyrB gene sequences showed that strain IEGM1388 is a member of the genus Williamsia,
its closest relative being Williamsia sp. NRRL B-15444R (JN201861.1). We do not consider
strain IEGM1388 to be G. rubripertincta hereafter.

Table 3. ANI and DDH values between Gordonia rubripertincta 112 and relative strains.

Strain Name ANI Value, % DDH Value, %

Gordonia rubripertincta ATCC14352T 99.98 98.90

Gordonia rubripertincta BP-295 98.18 78.40

Gordonia rubripertincta CWB2 98.08 86.40

Gordonia rubripertincta SD5 98.43 77.70

Gordonia rubripertincta W3S5 98.06 81.80

On the phylogenetic tree, strain 112 is also clustered with G. rubripertincta (Figure 1).

https://www.ncbi.nlm.nih.gov/genome/browse#!/prokaryotes/12310/
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3.2. The Plasmid of the Gordonia rubripertincta Strain 112

Contigs 15 and 17 of strain 112 were identified as plasmid elements with a total length
of 189,570 nucleotides (plasmid p1517). Plasmid p1517 is most related to plasmid pGKT1
of Gordonia sp. KTR9 (NC_018582.1) (Figure 2a). No significant kinship was observed with
the plasmids of G. rubripertincta SD5 and CWB2 strains (Figure 2b).
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Figure 2. Mauve visualization of locally collinear blocks identified between p1517 of G. rubripertincta
112 and relative plasmids: (a) pGKT1 of Gordonia sp. KTR9, (b) pGCWB2 of G. rubripertincta CWB2
and pGRS1 of G. rubripertincta SD5. Vertical bars mark boundaries between elements.

Plasmid p1517 of the G. rubripertincta strain 112 is predominantly composed of genes
encoding hypothetical proteins. It also contains genes encoding mobile genome elements,
plasmid maintenance, and separation genes. The genes responsible for metal transport
(lead, cadmium, zinc, mercury, manganese) and metal resistance (cadmium, cobalt, zinc)
are localized on plasmid p1517.

Plasmids pGCWB2 of G. rubripertincta CWB2 and pGRS1 of G. rubripertincta SD5,
unlike plasmid p1517 of strain G. rubripertincta 112, contain catabolic genes. Plasmid
pGCWB2 (CP022581.1) contains:

1. Phenylacetate catabolism gene cluster;
2. Styrene monooxygenase StyA, 3 beta-hydroxysteroid dehydrogenase/Delta 5–>4-

isomerase;
3. Genes involved in type IV secretory system Conjugative DNA transfer.

Plasmid pGRS1 of G. rubripertincta SD5 contains genes of the aromatic compound
catabolism pathway, namely aromatic ring-hydroxylating dioxygenase (alpha and beta
subunits), alpha/beta fold hydrolase, extradiol dioxygenase, and ferredoxin.

3.3. Pangenome Analysis of Gordonia rubripertincta Strains

The pangenome of strain 112 and its closest relatives (DDH > 80%) G. rubripertincta
ATCC14352, CWB2, and W3S5 was analyzed. All genomes used for pangenome analysis
had completeness above 99% and contamination levels of 0.03–0.54%.

The pangenome of the strains is represented by 4758 genes, of which 3669 of the
genes (77.11%) are core (genes that all our strains have). The result obtained may indicate
the heterogeneity of G. rubripertincta species (Figure 3). For comparison, in a previous
study [65], we showed that R. qingshengii accounts for 86% of the pangenome.
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The CWB2 strain has the greatest number of unique coding sequences among the
four G. rubripertincta strains analyzed. Among the 24 amino acid sequences unique to it
and not found in three other strains (Figure 3a), there are products with nitrilotriacetate
monooxygenase activity (four amino acid sequences), oxidoreductase activity (five aa
sequences), and aflatoxin biosynthetic process (two aa sequences). Strain 112 has four
unique amino acid sequences, but their function could not be determined. Strain 112 and
ATCC14352 are the closest relatives of all G. rubripertincta studied, so we expected to see
the greatest number of amino acid sequences unique to the pair (274 sequences, Table S1A).

In addition, we studied the pangenome of Gordonia strains from other species in our
laboratory collection. All the strains taken for analysis had one thing in common: the ability
to degrade alkanes. Strain G. polyisoprenivorans 135 utilized chloroaromatic compounds [18],
strain G. alkanivorans 135 utilized thiophenes as the sole source of sulfur [20], and strain G.
amicalis 1D utilized alkanes up to C36 [45]. Strain G. rubripertincta 112 was the only one of
all the listed strains that utilized short alkanes (C8-C12) more actively than alkanes with a
C16+ chain length.

The pangenome of the strains of four different Gordonia species is 4586 genes, of which
2885 (62.90%) derive from the core (Figure 3b). Among the different Gordonia species
analyzed, strain G. rubripertincta 112 is the most related to strain G. alkanivorans 135. The
G_rubr_112/G_alk_135 pair has 169 genes unique to the pair which were not found in the
other strains analyzed (Table S1B). Among the genes unique to the G_rubr_112/G_alk_135
pair, it is interesting to note the genes belonging to the following categories (Table 4).
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Table 4. Genes unique for the pair of strains G_rubr_112/G_alk_135 and their functions.

Gene Onthology (GO)
Category Identifier Function

Gene Identifier According to the
GenBank Annotation

112 135

0019439 aromatic compound catabolic process 01466 00188

0006707 cholesterol catabolic process 00126 03312

0008202 steroid metabolic process 00127 03311

0006694 steroid biosynthetic process 00124
00123

03314
03315

0009712 catechol-containing compound metabolic process 01163 01469

A BLAST search of the nucleotide (and amino acid, with similar results) sequence of
the 01466 gene of strain G. rubripertincta 112 showed that this sequence with the parameters
query cover > 90% and per. ident > 90% is characteristic only of some (not all) of the strains
of G. rubripertincta and G. alkanivorans (Table 5).

Table 5. Frequency of 01466 isochorismatase gene in Gordonia. The sequence from strain 112 was
taken as a reference.

Strain Sequence Name Query Cover, % Per. Ident, %

G. alkanivorans 135 isochorismatase family protein 100 100

G. rubripertincta SD5 isochorismatase family protein 100 97.29

G. alkanivorans YC-RL2 isochorismatase 100 96.68

G. alkanivorans GH-1 isochorismatase 100 96.68

G. rubripertincta CWB2 maleamate amidohydrolase 69 96.98

Changing the search mode from highly similar sequences (megablast) to somewhat
similar sequences (blastn) reveals organisms with sequences remotely related to the gene,
but their query coverage and percent identity are too low (<70%) to speak of unconditional
relatedness. The product of chorismatase catalyzes the hydrolysis of isochorismate into
2,3-dihydro-2,3-dihydroxybenzoate and pyruvate [66].

The steroid catabolism genes (GO:0006694, GO:0008202, GO:0006707) in both strains
are located one after another and presumably represent an operon of the following struc-
ture: flavin-dependent monooxygenase, reductase subunit HsaB → 4,5:9,10-diseco-3-
hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oate hydrolase→ hypothetical protein→
3-ketosteroid-9-alpha-monooxygenase, ferredoxin reductase component→ 3-oxosteroid
1-dehydrogenase. A BLAST search for the gene sequences of this operon showed that they,
similarly to isochorismatase, occur in individual representatives of G. rubripertincta and
G. alkanivorans.

There is no information in the literature on the phenotypic traits or the ability of G.
alkanivorans to utilize steroids. However, the genes responsible for this ability are found
in them. Besides G. alkanivorans, the gene cluster kst, responsible for the catabolism of
steroid compounds, is found in the following representatives of the genus Gordonia: G.
rubripertincta, G. bronchialis, G. insulae, G. mangrovi, G. araii, G. namibiensis, G. sputi, G. crocea,
and others. An experimental confirmation of this ability in Gordonia was performed for
G. cholesterolivorans [67] and Gordonia neofelifaecis [68,69]. The process of the catabolism of
steroid compounds has been studied in the most detail in the strain G. rubripertincta CWB2
strain [38]. Our strain G. rubripertincta 112, similar to other representatives of this species,
possesses a set of genes for steroid catabolism; however, the study of the phenotypic
manifestations of this process in strain 112 was not included in the task of this work.
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3.4. Functional Annotation of the Genome of the Strain 112

Out of 4787 genes, 2212 (46.2%) were functionally annotated (Figure 4).
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The result of the functional annotation shows that strain 112 possesses the genes of
all metabolic pathways required for autonomous culture existence. We also performed
functional annotation of the genomes of other G. rubripertincta from the Genbank database
(Table 6) to compare the representation of the metabolic pathways of interest in the genomes
of the strains of this species.

Table 6. Number of functionally annotated genes in genomes of known G. rubripertincta strains. In
cases where the strain genome is assembled to the complete level and has plasmids, the data are
presented in the sum for the chromosome and plasmid.

GenBank Accession
Number Strain Name Total Number of

Genes
Functionally

Annotated Genes
Functionally

Annotated Genes, %

JARUXG000000000 Gordonia rubripertincta 112 4787 2212 46.2

JAAXPB000000000.1 Gordonia rubripertincta
ATCC14352T 5023 2352 46.8

JAFFGU000000000.1 Gordonia rubripertincta BP-295 4650 2086 44.9

CP022580.1 Gordonia rubripertincta CWB2 4707 2092 44.4

CP059694.1 Gordonia rubripertincta SD5 4670 2058 44.1

VLNS00000000.1 Gordonia rubripertincta W3S5 4252 1993 46.9

The «Xenobiotics degradation and metabolism» category in strain 112 contains 77 genes.
The most frequently occurring genes (>10 genes) in the category are the following functional
clusters:

Benzoate degradation—23 CDS.
Xylene degradation—10 CDS.
Steroid degradation—11 CDS.
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3.4.1. Diversity of Aromatic Compound Catabolism Genes in the Genome of Gordonia
rubripertincta 112

We observed in strain 112 the ability to grow on benzoate and catechol as the sole
source of carbon and energy. Catechol degradation by the strain can occur via both the ortho-
and meta-pathways; the corresponding genes are found in the strain genome (Figure S2).

The xylene metabolism category contains no genes encoding the enzymes of the first
reaction of this process. In addition, we did not find the strain’s ability to grow on xylenes.
The metabolic pathway for xylene degradation in strain 112 begins from the middle, with
the methylbenzoate conversion reaction catalyzed by benzoate/toluate 1,2-dioxygenase
[EC:1.14.12.10 1.14.12.-]. One of the main metabolites of this process is methylcatechol
(three- or four-substituted), and the further pathway is similar to catechol catabolism.

The genomes of all G. rubripertincta strains contain two copies of the catechol 1,2-
dioxygenase (C1,2DO) genes (Table 7). The copies have 86% query coverage and 58.33%
identity between them.

Table 7. Representation of catechol dioxygenase genes in genomes of G. rubripertincta strains.

Strain C1,2DO C2,3DO

ATCC14352 2 1

W3S5 2 1

BP-295 2 -

SD5 2 -

CWB2 2 -

112 2 1

Genes of the catechol catabolism meta-pathway (in particular, catechol 2,3-dioxygenase
(C2,3DO)) are present in three of the six G. rubripertincta strains. The amino acid sequence
of the C2,3DO gene in strain W3S5 differs from that in strains ATCC14352 and 112. At 99%
coverage, the percent identity between them is 83.02%.

There are currently 55 known species of the genus Gordonia (https://lpsn.dsmz.de/
(accessed on 30 March 2023)). Genes of only the ortho-pathway of catechol catabolism
(in particular, C1,2DO) are present in the genomes of the strains of 22 species (Table S2).
Genes of both ortho (C1,2DO) and meta (C2,3DO) pathways were found in the genomes of
the representatives of 10 species. The prevalence of C1,2DO in Gordonia genomes allows
this gene to be used as a phylogenetic marker for the identification of strains of this genus.
Shen et al. [70] suggested that the catA gene encoding C1,2DO evolves faster than the rrn
operon or gyrB gene, so catA is a more sensitive marker for species identification. Gordonia
malaquae is the only species in the genus Gordonia whose strains have only C2,3DO genes
but no C1,2DO genes.

The enzymatic activity of C2,3DO in the work of Silva et al. [17] in the G. polyiso-
prenivorans strain was higher than that of C1,2DO under most of the conditions tested (pH,
temperature, time course, ion effect). However, it is worth noting that the authors used
complex LB medium with anthracene supplementation to cultivate the strain. Considering
that LB medium components are more available, and a preferable substrate compared to
anthracene, it is impossible to draw unequivocal conclusions about the process of aromatic
compound utilization and enzyme activity under such conditions. Solyanikova et al. [71]
also showed that when the cells of the G. polyisoprenivorans strain grew on a medium with
benzoate, the activity of catechol 1,2-dioxygenase was 0.850 U/(mg of protein), and the
activity of catechol 2,3-dioxygenase was absent. Thus, the simultaneous maintenance of
the two metabolic pathways of catechol catabolism in Gordonia genomes does not mean
that both pathways will be involved. Moreover, C2,3DO may be a redundant metabolic
pathway in Gordonia strains.

https://lpsn.dsmz.de/
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The cell number during growth on catechol reaches a maximum after 24 h of growth,
after which the culture enters the stationary phase (Figure 5).
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When growing on benzoate, we observed the maximum number of cells after 30 h of
growth. Thus, when utilizing aromatic compounds, the development of the periodic culture
of strain 112 proceeds rather quickly, which allows us to consider the biotechnological
promise of this strain for the utilization of these compounds.

3.4.2. Diversity of Alkane Catabolism Genes in Strain Gordonia rubripertincta 112

Strain 112 is capable of utilizing alkanes with a C10-C16 chain length, and the growth
on short alkanes (decane (C10) as an example) is observed not only in vapors, but also in
direct contact of the microorganism with the substrate. Growth on alkanes longer than C16
was not observed in the strain; therefore, we assumed that it, similarly to G. alkanivorans
strains, lacked alkB genes, and its ability to degrade alkanes was controlled by CYP153
genes. An analysis of the annotated genome confirmed our assumptions: strain 112 indeed
lacks alkB genes.

We analyzed the genomes of the other G. rubripertincta strains from the Genbank
database to understand whether the absence of alkB genes is a strain feature or a species-
specific pattern. All G. rubripertincta strains whose genomes were sequenced lack the
alkB operon.

The genome of strain 112 revealed four operons with a structure typical of the alkane
hydroxylating cluster of actinobacteria: cytochrome P450 hydroxylase, ferredoxin, and
ferredoxin reductase. An analysis of the prevalence of hydroxylase genes from these
operons among Gordonia showed that one of them (PRJNA953757:QBL07_23005) is not
found in other Gordonia. The presence of this gene is characteristic of some Rhodococcus
(Table 8), so we can assume that this operon CYP153 was obtained by strain 112 as a result
of a horizontal transfer from Rhodococcus strains.
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Table 8. Strains in whose genomes the genes most related to the CYP153 hydroxylase gene PR-
JNA953757:QBL07_23005 were found.

Strain Genbank Acc Number Query Cover, % Percent Identity, %

Rhodococcus pseudokoreensis R79 CP070619 93 74.96

Rhodococcus sp. USK10 CP076048 94 74.80

Rhodococcus opacus B4 AP011115 94 74.19

The GC content of the region where the described operon is located
(NODE_27_length_46626) is 65.7%, which is 2% lower than the GC content of the con-
tigs that have the highest affinity to the genome regions of the typical strain G. rubripertincta.
This observation suggests that some elements of contig 27 were acquired during horizontal
transfer.

3.5. Peculiarities of Alkane Catabolism by Strain G. rubripertincta 112

It is known that the toxicity of the aliphatic hydrocarbons decreases with an increasing
number of carbon atoms due to a decrease in their volatility [72]. Over 3 days, the abiotic
loss of decane and hexadecane in the system without microorganisms was 62.87% and
1.21%, respectively (Table 9).

Table 9. Abiotic loss and degree of degradation of aliphatic hydrocarbons by G. rubripertincta strain 112.

Growth Substrate Abiotic Loss, % Degradation Degree, %

hexadecane 1.21 ± 0.13 10.79 ± 1.17

decane 62.87 ± 0.41 16.14 ± 0.16

The degree of degradation of decane and hexadecane relative to the control system
without microorganisms was 10.79 and 16.14%, respectively. It can be noted that, despite
the high abiotic loss of decane, the degree of its degradation was higher compared to the
degree of hexadecane degradation.

Considering that the genome of strain 112 lacks alkB genes, and only cytochrome
P450 hydroxylases are used for alkane degradation, it was not surprising that the strain
is unable to oxidize alkanes longer than C16. Its abilities as an alkane degrader could be
exploited in soils contaminated with light fractions of oil and petroleum products. The
alkane catabolism genes in strain 112 are located on the chromosome, which suggests their
stable maintenance during both non-selective cultivation and remediation processes in
soil. In the genomes of other known G. rubripertincta strains, alkane destruction genes
are also localized on chromosomes; however, there are no data on the ability of these
strains to utilize alkanes. Thus, at this time, only G. rubripertincta 112 and CWB2 have
experimentally confirmed the ability to utilize alkanes. As for catechol degradation, strain
112 is currently the only representative of G. rubripertincta in which this ability has been
experimentally confirmed.

4. Conclusions

This study provides an improved understanding of the genomic organization of the
Gordonia rubripertincta strain and its metabolic capabilities. The ability of the strain of this
genus to utilize aromatic compounds was confirmed experimentally for the first time, and
the genetic pathways involved in this process were described. The ability to utilize alkanes
of different chain lengths, including short ones (decane), was described. The results provide
a powerful basis for further transcriptome experiments and the study of the regulation of
the catabolism of various pollutants by G. rubripertincta 112.
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