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The form factor of a hollow electron beam for transition radiation has been calculated. It has been shown that
the characteristics of coherent radiation are significantly different for conventional solid and hollow beams.
Numerical estimates have been obtained for terahertz radiation frequencies and relativistic energies of
electrons.
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1. INTRODUCTION
Hollow electron beams, i.e., beams with a ring

cross section, are currently under intensive study. In
particular, the authors of [1–3] proposed to use hol-
low electron beams to collimate intense main proton
or ion beams at the CERN Large Hadron Collider.
Electron beams are introduced in the collimation sys-
tem in order to clean the halo, whereas the main beam
circulates inside a hollow electron beam. The hollow
electron beam resonantly excites the tails of the main
beam, whereas the core of the main beam remains
unperturbed. Such devices are called hollow electron
lenses. The cleaning of the halo is relevant because of
the performed works to increase the total f luence at
the Large Hadron Collider by an order of magnitude.

The use of hollow electron lenses necessarily
requires the diagnostics of the transverse dimensions
of the main and hollow electron beams. One of the
actively developed ideas is to use the f luorescence of
gas [4]. An advantage of this method is that measure-
ments hardly distort the properties of a beam. Since
the method is novel, optical transition radiation is
used for its cross test. Optical transition monitors are
successfully used to measure the transverse profile of
electron beams at accelerators [5–7].

The acceleration of charged particles also is a
promising field where hollow beams of charged parti-
cles are used. Positrons can be accelerated to high
energies in wakefields generated by hollow electron
beams moving in a plasma. This possibility was con-
firmed by the computer simulation of the generation
of wakefields and the dynamics of hollow electron
beams [8–10].

It is also important to study the dynamics of hollow
beams and the characteristics of radiation that is gen-

erated by them for the actively developed physics of
particles with a nonzero orbital angular momentum
(twisted electrons) [11, 12] because the distribution
functions describing twisted electrons or electron
beams are similar in the classical approach to the elec-
tron distribution function in the hollow beam.

Only the single-electron approach is used in most
studies of hollow beams. The difference of the mul-
tielectron approach from the single-electron one is
briefly in the inclusion of the form factor of the beam,
which depends on the shape, density, and dimensions
of the beam and on the electron distribution function
in the beam . In [13, 14], we show that the form
factor depends on the type of radiation. In this work,
we calculate the form factor of the hollow beam for
transition radiation; see Fig. 1.

2. CONVENTIONAL APPROACH
The form factor is long known for synchrotron and

some other types of radiation but mainly in the case of
the Gaussian or uniform electron distribution in a
beam [15–17]. It is noteworthy that known form fac-
tors are often used incorrectly; moreover, the notion of
form factor is sometimes inapplicable; for details, see
[14, 18].

The intensity of most types of radiation can be rep-
resented in the form

(1)

where  is the intensity of radiation from a single elec-
tron and F is the form factor of the beam. The intensity
can be defined as, e.g., the angular and frequency dis-
tribution of the emitted energy [13] or radiation power
[19]. In the case of a large number of electrons in a
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Fig. 1. (Color online) Hollow electron beam shown in rose
intersects the target given in green and generates transition
radiation.

Fig. 2. (Color online) Electron marked in red excites
(a) Cherenkov radiation moving in the medium and
(b) transition radiation crossing the interface between two
media indicated by the vertical line; reff is the effective
relaxation radius of the electron field shown in blue.
beam , the form factor can be expressed by the
formula

(2)

Here,  and  are the coherent and incoherent
form factors, respectively. A particular form of 
and  depends on the type of radiation.

We consider polarization radiation generated by a
charged particle interacting with an infinite amor-
phous medium, i.e., a medium where the distance
from its edges to an electron perpendicular to its tra-
jectory is much larger than the effective radius of
relaxation of the field of the moving electron

. Here, γ is the Lorentz factor of the elec-
tron, λ is the radiation wavelength, and ,
where  is the velocity of the electron and c is the speed
of light in vacuum. In other words, the medium can be
treated as infinite if the electron is “insensitive” to the
edges of the medium (see Fig. 2). This treatment is
applicable to transition radiation, Cherenkov radia-
tion, and parametric X-ray radiation. The source of
these types of radiation is the material of a target,
which is dynamically polarized under the action of the
field of the moving relativistic electron. In this case,
the velocity of the electron can be considered constant
when the kinetic energy of the electron is much larger
than the energy transferred to radiation.

The incoherent form factor for such types of radia-
tion is  (see, e.g., [20]) because all electrons
make the same contribution to the polarization of the
medium; i.e., the transverse position of an electron
does not affect the characteristics of radiation [14].
The coherent form factor for transition radiation is
calculated by the formula [13, 14]

(3)
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where f(r) is the normalized electron distribution
function in the beam, r is the position vector of the
electron with respect to the center of the beam,

 is the frequency of radiation, and k = (kx,
ky, kz) is the wave vector of radiation. Formula (3) is
obtained under the assumption that all electrons move
at a constant velocity v along the  axis; i.e., the
angular divergence of the beam, as well as the energy
spread in it, is disregarded. Formula (3) can be
obtained by calculating the radiation intensity of radi-
ation for all electrons in terms of the corresponding
field and by averaging the result over the positions of
all electrons.

3. HOLLOW BEAM

We consider the beam with the Gaussian distribu-
tion of electrons in the longitudinal direction parallel
to the velocity; the beam is hollow in the transverse
direction. Let the longitudinal and transverse compo-
nents of the position vector of the electron be indepen-
dent. Then, neglecting correlations in the beam and
assuming that the positions of electrons are indepen-
dent of the positions of their neighbors, we can repre-
sent the distribution function  in the form

(4)

where  and  are the longitudinal and
transverse distribution functions, respectively. The
longitudinal profile of the beam determines the explicit
form of the corresponding multiplier in the form factor
and can be arbitrary.

The distribution functions for the beam under con-
sideration can be written in cylindrical coordinates in
the form

(5)

where  is the characteristic longitudinal dimension
of the beam;

(6)
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Fig. 3. (Color online) Transverse profile of the hollow
beam with (a) r0 = 150 μm and σtr = 75 μm (μ = 2) and
(b) r0 = 200 μm and σtr = 20 μm (μ = 0).

(a) (b)

where R and ϕ are the cylindrical coordinates intro-
duced through the relations  and

,  is the radius of the hollow beam,  is
the thickness of the beam ring, and A is the normaliza-
tion coefficient given by the expression

(7)

Here,  and erf(μ) is the error function spec-
ified by the formula

(8)

In this work, we ignore the rotation of electrons inside
the beam and the orbital angular momentum of elec-
trons. It is important to take into account the orbital
angular momentum of electrons, e.g., when consider-
ing quantum packets with a nonzero orbital angular
momentum. The inclusion of these effects not only
changes the description of the structure of the beam
but also requires the recalculation of the intensity of
transition radiation from one electron (see, e.g., [11]).
Figure 3 shows two transverse distribution functions.

The substitution of the distribution functions (5)
and (6) into Eq. (3) gives the following expression for
the coherent form factor of the hollow beam:

(9)

Here, Flong and Ftr are the longitudinal and transverse
coherent form factors, respectively, given by the
expressions

(10)

(11)

Here,

(12)

where  is the zeroth-order Bessel function and

. Substituting the known expansion
[21]

(13)

into Eq. (12), we obtain
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Here,  is the confluent hypergeometric func-
tion and Γ is the gamma function. The final expression
for the transverse coherent form factor of the hollow
electron beam has the form

(16)

According to this expression, the form factor
depends on the radiation observation angle. In other
words, the effect of the beam shape on the character-
istics of radiation depends on the radiation propaga-
tion direction.

Expression (16) applied to an electron beam with
the conventional Gaussian transverse distribution,
i.e., with  or , has the form

(17)

This expression coincides with a classical expression
(see, e.g., [20]).

Using known recurrence relations for confluent
hypergeometric functions, Eq. (14) can be reduced to
the form

(18)

Here, the first confluent hypergeometric function can
be represented in the form

(19)
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Fig. 4. (Color online) Transverse form factor versus (а) the
frequency of radiation at θ = 45° and (b) the radiation
observation angle at  THz for the (solid lines) hol-
low and (dashed lines) Gaussian beams at γ = 16 and
(black solid line) μ = 2 and σtr = 75 μm, (red solid line)
μ = 10 and σtr = 20 μm, (black dashed line) μ = 0 and
σtr = 75 μm, and (red dashed line) μ = 0 and σtr = 20 μm.
(с) Profiles of the Gaussian and hollow beams with the
same standard deviation σtr.

Gaussian beam

�

ν = 1.2

Fig. 5. (Color online) Same as in Fig. 4 but for the Gauss-
ian and hollow beams with the same outer radius. 

Gaussian beam

�

In order to transform the second term in Eq. (18), we
use the formula obtained in [22]. Simple transforma-
tions give

(20)

where  is the generalized hypergeometric function,
which in this case is independent of the parameters of
the problem and is a numerical coefficient and I0 and
Im are the modified Bessel functions. We note that
recurrence relations reduce Im to a combination of the
functions I0 and I1.

The final expression for the transverse form fac-
tor (16) has the form

(21)
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Formula (21) is lengthier than Eq. (16), but it includes
the physically informative factor , which
is useful for the qualitative understanding of the
behavior of the solution (e.g., see the asymptotic
behavior at high frequencies in Figs. 4а and 5а).

We introduce the radiation observation angles θ
and φ as follows:

(22)

It is noteworthy that the determined transverse
form factor of the beam depends on the polar angle of
radiation observation  but does not depend on the
azimuth angle φ. This property is due to the axial sym-
metry of the beam. If the axial symmetry is broken,
e.g., when the electron trajectories in the beam are
twisted, the form factor can depend on the angle φ.
This case requires additional calculations, which are
beyond the scope of this work.

To plot the dependences of the form factor (16) on
various variables, infinite series should be truncated,
e.g., by imposing the condition that the addition of the
next terms does not change the plots. It is necessary to
take into account that the number of terms depending
on the dimensions of the bunch can be rather large.

The dependences of the transverse form factor (16)
on the frequency  and on the polar angle of
observation θ are shown by solid lines in Fig. 4 for the
beams whose profiles are presented in Fig. 3. It is seen
that, as expected, the maximum form factor equal to
unity is reached at the smallest observation angles and
at the lowest frequencies of radiation. The frequency
and angular regions near zero, where the form factor is

( )+∞  σ× − +  
 


22 2

tr tr
3 2

=1

3 1, , ;1, ;1 .
2 2 8m

m

kF m m s I

−σ2 2
tr trexp[ /4]k

θ θ φ
θ φ

= cos , = sin sin ,
= sin cos .

x y

z

n n
n

θ

ν ω π= /(2 )



496 SERGEEVA, TISHCHENKO
close to unity, correspond to the full transverse (spa-
tial) coherence of radiation. These regions are of inter-
est for the development of sources of intense radiation,
but they are interesting for the diagnostics of electron
bunches only in application to the measurement of
longitudinal dimensions. Indeed, the characteristics
of radiation in these regions are independent of the
transverse dimensions of beams. On one hand, the
longitudinal dimensions of the beam cannot be mea-
sured; on the other hand, an excess parameter (trans-
verse dimension), which noticeably complicates the
solution of the inverse problem to reconstruct the lon-
gitudinal dimension/profile of the beam from the
measured radiation distribution, is removed.

We now compare the spectral and angular charac-
teristics of the transverse form factor for hollow beams
and beams with the Gaussian electron distribution
(below, Gaussian beams for brevity).

This comparison is possible in two ways. The first
way is to compare the hollow and Gaussian beams
with the same standard deviation  (see Fig. 4с). In
this case, the transverse electron distribution is given
by the same formula (6) with  for the Gaussian
beam and  for the hollow beam. Then, the form
factors of the Gaussian and hollow beams are given by
Eqs. (17) and (16), respectively. These form factors are
compared in Fig. 4, where dashed lines correspond to
the Gaussian beam.

It is seen in Fig. 4 that the form factor of the hollow
beam, unlike the Gaussian beam, is an oscillating
function of the frequency and polar angle. As a result,
a set of particular frequencies are separated in the total
radiation intensity. Such a picture is usually observed
in the longitudinal form factor (at temporal, i.e., lon-
gitudinal, coherence) for periodically modulated
beams [23–25]. This additionally allows one to mono-
chromatize the spectrum through the modulation of
the hollow beam when the maxima of the longitudinal
and transverse form factors are observed at the same
frequencies.

It is also seen in Fig. 4 that the region of the full
spatial coherence of radiation from the hollow beam is
much smaller than that from the Gaussian beam. This
means that the effect of transverse dimensions of the
beam on the angular and frequency distributions of the
radiation intensity can be neglected when processing
experimental data for Gaussian beams but cannot be
neglected in the case of hollow beams.

The second way of comparison of the spectral and
angular characteristics of the transverse form factor for
hollow and Gaussian electron beams is possible when
the outer radius of the beams is the same, whereas the
degrees of population of the inner part of beams by
electrons are different (see Fig. 5с). Mathematically,
this means that the sum of the radius  and the standard
deviation  of the hollow beam is equal to the stan-
dard deviation of the Gaussian beam: .

σtr

0 = 0r
≠0 0r

0r
σtr

σ + σtr 0 tr= gr
In this case, the transverse form factor of the hollow
beam is still given by Eq. (16), whereas Eq. (17) for the
Gaussian beam is modified to the form

(23)
The comparison is presented in Fig. 5, where the solid
lines for hollow beams are the same as in Fig. 4.
According to Fig. 5, the regions of the full spatial
coherence of the hollow and Gaussian beams become
almost the same because the number of electrons dis-
tributed in the same region determined by the outer
radius of the bunches is the same.

The population of the inner part of the
bunch/beam also strongly affects the form factor at
high frequencies and large observation angles in this
case: oscillations are observed for the hollow beam and
are absent for the Gaussian beam.

4. CONCLUSIONS
It has been shown that the transverse form factor,

which is determined by the transverse dimensions of a
beam, is important for hollow beams in application to
the generation of X-ray photons in free electron X-ray
lasers and synchrotrons, including the generation of
radiation by electron beams with a nonzero orbital
angular momentum. The results are particularly
important because the transverse form factor for con-
ventional (not hollow) electron beams is often nearly
unity, so that the effect of the transverse dimensions of
the beam is neglected.

FUNDING

This study was supported by the Russian Science Foun-
dation (project no. 21-72-00113, D. Sergeeva, Sections 3
and 4) and in part by the Ministry of Science and Higher
Education of the Russian Federation (project no. FZWG-
2020-0032 (2019-1569), competitive part of the state
assignment for the organization and development of labora-
tories, A. Tishchenko, Sections 1 and 2).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

OPEN ACCESS

This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Com-
mons license, and indicate if changes were made. The images
or other third party material in this article are included in the
article’s Creative Commons license, unless indicated other-
wise in a credit line to the material. If material is not included
in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the

→ −σ μ +2 2 2
tr tr trexp( ( 1) /2).F k
JETP LETTERS  Vol. 117  No. 7  2023



FORM FACTOR IN TRANSITION RADIATION FROM HOLLOW BEAM 497
permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit
http://creativecommons.org/licenses/by/4.0/.

REFERENCES
1. G. Stancari, A. Valishev, G. Annala, G. Kuznetsov,

V. Shiltsev, D. A. Still, and L. G. Vorobiev, Phys. Rev.
Lett. 107, 084802 (2011).

2. S. Redaelli, R. B. Appleby, R. Bruce, O. Brüning,
A. Kolehmainen, G. Ferlin, A. Foussat, M. Giovan-
nozzi, P. Hermes, D. Mirarchi, D. Perini, A. Rossi, and
G. Stancari, J. Instrum. 16, P03042 (2021).

3. X. Gu, W. Fischer, Z. Altinbas, et al., Phys. Rev. Accel.
Beams 23, 031001 (2020).

4. A. Salehilashkajani, H. D. Zhang, M. Ady, et al., Appl.
Phys. Lett. 120, 174101 (2022).

5. C. Behrens, C. Gerth, G. Kube, B. Schmidt, S. Wesch,
and M. Yan, Phys. Rev. ST Accel. Beams 15, 062801
(2012).

6. L. G. Sukhikh, G. Kube, S. Bajt, W. Lauth, Yu. A. Pop-
ov, and A. P. Potylitsyn, Phys. Rev. ST Accel. Beams
17, 112805 (2014).

7. A. Potylitsyn, L. Sukhikh, T. Gusvitskii, G. Kube, and
A. Novokshonov, Phys. Rev. Accel. Beams 23, 042804
(2020).

8. N. Jain, Phys. Plasmas 26, 023107 (2019).
9. J. Vieira and J. T. Mendonca, Phys. Rev. Lett. 112,

215001 (2014).
10. N. Jain, T. M. Antonsen, Jr., and J. P. Palastro, Phys.

Rev. Lett. 115, 195001 (2015).
11. I. P. Ivanov and D. V. Karlovets, Phys. Rev. Lett. 110,

264801 (2013).
12. S. S. Baturin, D. V. Grosman, G. K. Sizykh, and

D. V. Karlovets, Phys. Rev. A 106, 042211 (2022).

13. D. Yu. Sergeeva, A. A. Tishchenko, and M. N. Strikha-
nov, Nucl. Instrum. Methods Phys. Res., Sect. B 309,
189 (2013).

14. A. A. Tishchenko and D. Yu. Sergeeva, JETP Lett. 110,
638 (2019).

15. Y. Shibata, S. Hasebe, K. Ishi, S. Ono, M. Ikezawa,
T. Nakazato, M. Oyamada, S. Urasawa, T. Takahashi,
T. Matsuyama, K. Kobayashi, and Y. Fujita, Phys. Rev.
E 57, 1061 (1998).

16. Y. Shibata, T. Takahashi, T. Kanai, K. Ishi, and
M. Ikezawa, Phys. Rev. E 50, 1479 (1994).

17. G. P. Williams, C. J. Hirschmugl, E. M. Kneedler,
P. Z. Takacs, M. Shleifer, Y. J. Chabal, and F. M. Hoff-
mann, Phys. Rev. Lett. 62, 261 (1989).

18. D. Yu. Sergeeva and A. A. Tishchenko, JETP Lett. 115,
713 (2022).

19. J. S. Nodvick and D. S. Saxon, Phys. Rev. 96, 180
(1954).

20. G. M. Garibyan and Ya. Shi, X-Ray Transition Radia-
tion (Akad. Nauk ArmSSR, Erevan, 1983) [in Russian].

21. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals,
Series and Products, 4th ed. (GIFML, Moscow, 1963;
Academic, New York, 1980).

22. Y. Luke, Math. Comput. 13, 261 (1959).
23. D. Y. Sergeeva, A. P. Potylitsyn, A. A. Tishchenko, and

M. N. Strikhanov, Opt. Express 25, 26310 (2017).
24. G. A. Naumenko, A. P. Potylitsyn, D. Yu. Sergeeva,

A. A. Tishchenko, M. N. Strikhanov, and V. V. Bleko,
JETP Lett. 105, 553 (2017).

25. G. A. Naumenko, A. P. Potylitsyn, P. V. Karataev,
M. A. Shipulya, and V. V. Bleko, JETP Lett. 106, 127
(2017).

Translated by R. Tyapaev
JETP LETTERS  Vol. 117  No. 7  2023


	1. INTRODUCTION
	2. CONVENTIONAL APPROACH
	3. HOLLOW BEAM
	4. CONCLUSIONS
	REFERENCES

		2023-05-24T13:32:39+0300
	Preflight Ticket Signature




