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Abstract
The main goal of this paper is to analyze the solution to the singular heat equation. A singular heat equa-
tion is the parabolic equation, where the Laplace-Bessel operator acts by spatial variables. We study its 
fundamental solution as well as the solution to the Cauchy problem. Also, we give semigroup properties for 
singular thermal potential, construct fractional powers of the Laplace-Bessel operator using Balakrishnan 
formulas, and consider parabolic Bessel potential. Finally, we prove the boundedness of the parabolic Bes-
sel potential.
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Introduction

This paper consists of seven sections. In the first section, we give a brief overview of the results on non-classical para-
bolic equations and describe the content of the article. In the second section of this paper, a brief background is presented. 
We define weighted L�

p
 spaces, generalized convolution, Hankel transform, Fourier-Bessel transform, and others. The third 

section contains properties of fundamental solution to the singular parabolic differential equation (Δ� )xu(x, t) = ut(x, t) , 
where

(1)Δ� =

n∑
i=1

B�i
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is Laplace-Bessel operator, B�i
=

�2

�x2
i

+
�i

xi

�

�xi

 , i = 1, ..., n . In the fourth section, we prove theorem concerning properties 

of the solution to the Cauchy problem for the multidimensional singular heat equation. The fifth section contains theorem 
about semigroup properties of singular thermal potential. As a conclusion, we can construct fractional powers of Laplace-
Bessel operator using Balakrishnan formulas. Finally, in the sixth section, we consider parabolic Bessel potential, obtain 
its boundedness, and provide a connection with an iterated singular parabolic differential equation. The seventh section 
is the conclusion.
Operator Eq. 1 and singular elliptic problems were considered in [1, 2]. The classical theory of parabolic equation can be 
found in [3]. Non-classic parabolic equations arise from different practical problems. For example, generalizations of dif-
fusion equation have attracted a growing interest due to its widespread applications in anomalous diffusion processes [4], 
and non-classic parabolic equation is used to describe physical phenomena such as non-Newtonian flow [5]. The connection 
of parabolic equation and its generalizations with Markov processes with continuous paths, called diffusion processes, has 
been studied extensively, for example, in the [6–8]. Quasilinear parabolic equations arise in soil mechanics [9]. A stochastic 
analogue of the linear Oskolkov equation, which is a non-classical equation connected with a parabolic equation, was studied 
in [10]. Non-classical boundary value problems for the parabolic equation emerge in heat conduction [11]. Pure mathemati-
cal interest to the asymptotic behavior of the solution to non-classic parabolic equation was demonstrated in [12], where the 
Cauchy problem for a degenerate parabolic equation with inhomogeneous density was studied. The paper [13] was devoted 
to properties of sets of initial-value functions providing the stabilization of Cauchy problem solutions for parabolic equations. 
Solutions of a direct problem for a stochastic pseudo-parabolic equation with fractional Caputo derivative are investigated in 
[14]. The classical parabolic potential was considered in [15].

Preliminaries

Suppose that ℝn is the n-dimensional Euclidean space,

�=(�1, ..., �n) is a multi-index consisting of positive fixed real numbers �i , i=1, ..., n, and |�|=�1+…+�n . We deal with 
Laplace-Bessel operator Δ�=

n∑
i=1

B�i
, where B�i

=
�2

�x2
i

+
�i

xi

�

�xi

 , i = 1, ..., n.

Next, we give some definitions (see [16]).
Let L�

p
(ℝn

+
) = L�

p
 , 1≤p<∞ be the space of all measurable in ℝn

+
 functions even with respect to each variable xi , i = 1, ..., n 

such that

where and furtherx�=
n∏

i=1

x
�i

i
. For a real number p ≥ 1 , the L�

p
–norm of f is defined by

It is known (see [1]) that L�
p
 is a Banach space.

Let Ω ⊂ ℝ
n
+
∪ {xi = 0, i = 1, ..., n} and mes� (Ω) be weighed measure of Ω:

For every measurable function f(x) defined on ℝn
+
 , we consider

ℝ
n
+
={x=(x1,… , xn) ∈ ℝ

n, x1>0,… , xn>0},

∫
ℝ

n
+

|f (x)|px𝛾dx < ∞,

‖f‖L
�
p(ℝ

n
+)
= ‖f‖p,� =

⎛⎜⎜⎜⎝
∫
ℝ

n
+

�f (x)�px�dx

⎞⎟⎟⎟⎠

1∕p

.

mes� (Ω) = ∫
Ω

x�dx.
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where {x ∶ |f (x)| > t}+={x ∈ ℝ
n
+
∶ |f (x)| > t} . We will name the function �� = �� (f , t) as weighted distribution func-

tion |f (x)|.
Space L�

∞(ℝ
n
+
)=L

�
∞ is defined as a set of measurable on ℝ+

n
 and even with respect to each variable function f(x) such as

By the Chebyshev inequality, we have

Norms of the spaces L�
p
 and L�

∞ are connected by the following equality:

Let L�

1,loc
(X) , X ⊂ ℝ

n
+
 be the space of all functions integrable with the weight x� on compact subsets in X:

Let Ω be finite or infinite open set in ℝn symmetric with respect to each hyperplane xi=0 , i = 1, ..., n , Ω+ = Ω ∩ℝ
n
+
 and 

Ω+ = Ω ∩ℝ
n
+
 where ℝ n

+
={x=(x1,… , xn)∈ℝ

n, x1≥0,… , xn≥0}. We deal with the class Cm(Ω+) consisting of m times 
differentiable on Ω+ functions and denote by Cm(Ω+) the subset of functions from Cm(Ω+) such that all derivatives of these 
functions with respect to xi for any i = 1, ..., n are continuous up to xi=0 . Class Cm

ev
(Ω+) consists of all functions from 

Cm(Ω+) such that �
2k+1f

�x2k+1
i

||||xi=0

= 0 for all non-negative integer k ≤ m−1

2
 . In the following, we will denote Cm

ev
(ℝ n

+
) by Cm

ev
 . We 

set

with intersection taken for all finite m and C∞
ev
(ℝ+) = C∞

ev
 . Let 

◦

C ∞
ev
(Ω+) be the space of all functions f∈C∞

ev
(Ω+) with a 

compact support. We will use the notation 
◦

C ∞
ev
(Ω+)=Dev(Ω+).

The space of weighted generalized functions D�
ev
(ℝn

+
) = D

�
ev

 is a class of continuous linear functionals that map a set 
of test functions f ∈ Dev into the set of real numbers. Each function u(x) ∈ L

�

1,loc
 will be identified with the functional 

u ∈ D
�
ev
(ℝn

+
) = D

�
ev

 acting according to the formula

Generalized functions u ∈ D
�
ev

 acting by the formula Eq. 3 will be called regular weighted generalized functions. All other 
generalized functions u ∈ D

�
ev

 will be called singular weighted generalized functions.
Weighted delta-function �� ∈ D

�
ev

 is defined by the equality

The generalized convolution has the form

𝜇𝛾 (f , t) = mes𝛾{x ∈ ℝ
n
+
∶ |f (x)| > t} = ∫

{x∶ |f (x)|>t}+

x𝛾dx,

‖f‖L
𝛾
∞(ℝ+

n
) = ‖f‖∞,𝛾 = ess sup𝛾

x∈ℝn
+

�f (x)� = inf
a∈ℝ

{𝜇𝛾 (f , a) = 0} < ∞.

(2)�� (f , t) ≤ ‖f‖p
p,�

tp
.

‖f‖∞,� = lim
p→∞

‖f‖p,� .

f ∈ L
𝛾

1,loc
(X) ⇔ ∫

X

|f (x)|x𝛾dx < ∞.

C∞
ev
(Ω+) = ∩Cm

ev
(Ω+)

(3)(u, f )� = ∫
ℝ

n
+

u(x) f (x) x� dx, f ∈ Dev.

(�� ,�)� = �(0), �(x) ∈ Dev.

(4)(f ∗ g)� (x) = (f ∗ g)� = ∫
ℝ

n
+

f (y)(�Ty
x
g)(x)y� dy.
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Here, �Ty
x
 is the multidimensional generalized translation

�i T
yi

xi
 is the one-dimensional generalized translation

Here, 𝛾i > 0 , i=1,…, n . For �i = 0 the one-dimensional generalized translation �i T
yi

xi
 is given by 0T

yi

xi
=

f (x+y)+f (x−y)

2
. Con-

volution Eq. 4 is adapted for operator Δ� . We put C(�) = �−
n

2

n∏
i=1

Γ
�

�i+1

2

�

Γ
�

�i
2

� .

Let p, q, r ∈ [1,∞) and 1

p
+

1

q
= 1 +

1

r
. If f ∈ L�

p
 , g ∈ L�

q
 , then (f ∗ g)� and

Normalized function of the first kind j� is j�(x) =
2�Γ(�+1)

x�
J�(x), where J� is the Bessel function of the first kind (see [17]).

For x ∈ ℝ
n , we set j� (x, �) =

n∏
i=1

j �i−1

2

(xi�i) , j� (0, �) = 1.

Multivariate Hankel transform of function f∈L
�

1
(ℝn

+
) is

Fourier-Bessel transform of function f∈L
�

1
(ℝn

+
× (−∞,∞)) is

We also need formulas

where S+
1
(n) is a part of a unit sphere with a center at the origin belonging to ℝn

+
:

We will use the notation fm ⇉ f  to denote {fm} uniformly converging to f.

( �Ty
x
f )(x) = �Ty

x
f (x) = ( �1 Ty1

x1
… �n Tyn

xn
f )(x),

( �i Tyi

xi
f )(x)=

Γ
�

�i+1

2

�

√
�Γ

�
�i

2

�×

×

�

∫
0

f (x1,… , xi−1,

√
x2

i
+ y2

i
− 2xiyi cos�i, xi+1,… , xn) sin�i−1 �i d�i.

(5)‖(f ∗ g)�‖r,� ≤ ‖f‖p,�‖g‖q,� .

(6)F� [f (x)](�) = F� [f (x)](�) = f̂ (�) = ∫
ℝ

n
+

f (x) j� (x;�)x�dx.

(7)FB[f (x, t)](�, �) =

∞

∫
−∞

∫
ℝ

n
+

j� (x, �) ⋅ eit� f (x, t) x� dx dt.

(8)�S+
1
(n)�� = ∫

S+
1
(n)

x�dS =

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+���
2

� ,

(9)∫
S+

1
(n)

j� (x, r�)�� dS =

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+���
2

� j n+���
2

−1
(r�x�),

S+
1
(n)={x ∈ ℝ

n
+
∶ |x|=1} ∪ {x ∈ ℝ

n
+
∶ xi = 0, |x|≤1, i = 1, ..., n}.
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Fundamental solution to the singular heat equation

Consider the following function

A number of remarkable properties of Eq. 10 are gathered in [18]. Among them are the following: 

1. For all x ∈ ℝ
n
+
 , t > 0 function E� (x, t) can be estimated using the power function: 

 where Cn,� is some constant;
2. For all x ∈ ℝ

n
+
 , t > 0 function E� (x, t) is a solution of the singular heat equation 

The function E� (x, t) is called a fundamental solution of Eq. 11. In addition, the following properties of Eq. 10 
are valid.

Lemma 1 

1. The Hankel transform Eq. 6 of the function E� (x, t) by x ∈ ℝ
n
+
 , t > 0 is 

2. Fourier-Bessel transform Eq. 7 of the function E� (x, t) by (x, t), where x ∈ ℝ
n
+
 , t ∈ ℝ is 

3. Let s > 0 , t > 0 . Generalized convolution Eq. 4 of E� (x, t) with E� (x, t) by x ∈ ℝ
n
+
 is 

4. For all 𝜀 > 0 , we obtain integral estimate 

(10)E𝛾 (x, t) =
1

2�𝛾�
n∏

i=1

Γ
�

𝛾i+1

2

�
�

t
−

n+�𝛾�
2 e

−
�x�2
4t if t > 0;

0 if t ≤ 0.

0 < E𝛾 (x, t) <
Cn,𝛾

t
n+|𝛾|

2

,

(11)(Δ� )xu(x, t) = ut(x, t).

(12)(F� )x[E� (x, t)](�, t) = e−t|�|2 .

(13)(FB)x,t[E� (x, t)](�, �) = (|�|2 − i�)−1.

(14)∫
ℝ

n
+

E� (y, s)( �Ty
x
E� (x, t)) y�dy = E� (x, t + s).

|||||||
�
ℝ

n
+

(�Ty
x
E� (x, t))�(y)y�dy

|||||||
≤

(15)≤ 1

2���
n∏

i=1

Γ
�

�i+1

2

� e
1

4t

�
1

�
−1

�
�x�2

t
n+���

2
�
ℝ

n
+

e
−

1−�

4t
�y�2 ��(y)�y�dy.
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Proof 

1. Let (r, �) be the usual spherical coordinates, then, using formula Eq. 9 and integral 2.12.9.3 from [20], we get 

2. Using spherical coordinates (r, �) and formula (12), we obtain 

3. For t > 0 , we have 

(F� )x[E� (x, t)](�, t) = ∫
ℝ

n
+

E� (x, t) j� (x;�)x�dx =

=
Cn,�

t
n+|�|

2
∫
ℝ

n
+

e
−

|x|2
4t j� (x;�)x�dx = {x = r�} =

=
Cn,�

t
n+|�|

2

∞

∫
0

e
−

r2

4t rn+|�|−1dr ∫
S+

1
(n)

j� (r�, �)�� dS =

=
1

t
n+|�|

2

21−n−|�|

Γ
(

n+|�|
2

)
∞

∫
0

e
−

r2

4t j n+|�|
2

−1
(r|�|)rn+|�|−1dr =

=
1

(2t)
n+|�|

2 |�| n+|�|
2

−1

∞

∫
0

e
−

r2

4t J n+|�|
2

−1
(r|�|)r n+|�|

2 dr =

=
1

(2t)
n+|�|

2 |�| n+|�|
2

−1
2

n+|�|
2 e−t|�|2 |�| n+|�|−2

2 t
n+|�|

2 = e−t|�|2 .

(FB)x,t[E� (x, t)](�, �) =

∞

∫
−∞

∫
ℝ

n
+

j� (x, �) ⋅ e−it�E� (x, t) x� dx dt =

=

∞

∫
0

e−(|�|2−i�)tdt = (|�|2 − i�)−1.

(F� )x ∫
ℝ

n
+

E� (y, s)( �Ty
x
E� (x, t)) y�dy =

= (F� )x[E� (x, t)](�, t)(F� )x[E� (x, s)](�, s) =

= e−t|�|2 e−s|�|2 = e−(t+s)|�|2 .
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 Therefore, 

4. Let t>0 , �=(�1, ..., �n) , ⟨xy cos �⟩=x1y1 cos �1+...+xnyn cos �n. For integral I= ∫
ℝ

n
+

(�Ty
x
E� (x, t))�(y)y� dy, we obtain 

 Changing variables of integration by 

 gives 

 where 

 and �ℝ2n
+

= {�y ∈ ℝ
2n ∶ �y2i > 0, i = 1, ..., n} . Since 2�⟨x, ỹ �⟩� ≤ 1

�
�x�2 + ��̃y ��2 , then for all 𝜀 > 0 , we obtain 

 and 

∫
ℝ

n
+

E� (y, s)( �Ty
x
E� (x, t)) y�dy = (F� )

−1
�

e−(t+s)|�|2 = E� (x, t + s).

I =
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� t
−

n+���
2 ∫

ℝ
n
+

�

∫
0

...

�

∫
0

exp
�
−

1

4t

��x�2 + �y�2 − 2⟨xy cos �⟩�
�
×

×�(y)

n∏
i=1

sin�i−1 �i d�iy
�dy.

(16)

ỹ1 =y1 cos �1, ỹ2 = y1 sin �1,

ỹ3 =y2 cos �2, ỹ4 = y2 sin �2,… ,

ỹ2n−1 =yn cos �n, ỹ2n = yn sin �n,

I =
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� t
−

n+���
2 ∫̃

ℝ
2n
+

exp
�
−

1

4t

��x − ỹ ��2 + �̃y���2�
�
�̃(̃y)

n�
i=1

y
�i−1

2i
dỹ,

ỹ =(̃y1, ..., ỹ2n) = (̃y�, ỹ��),

ỹ� =(̃y1, ỹ3, ..., ỹ2n−1),

ỹ�� =(̃y2, ỹ4, ..., ỹ2n),

�̃(̃y) =�

(√
ỹ2

1
+ ỹ2

2
, ...,

√
ỹ2

2n−1
+ ỹ2

2n

)
,

(17)�x − ỹ ��2 = �x�2 − 2⟨x, ỹ �⟩ + �̃y ��2 ≥ �
1 −

1

�

�
�x�2 + (1 − �)�̃y ��2,

exp
(
−

1

4t

(|x − ỹ �|2 + |̃y��|2)
) ≤

≤ exp
(
−

1

4t

((
1 −

1

�

)
|x|2 + (1 − �)|̃y �|2 + |̃y��|2

))
,

�I� ≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
−

1

4t

�
1−

1

�

�
�x�2

t
n+���

2

×
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 Returning back to the old variables y=(y1, ..., yn) , we get 

 Here, we took into account that 

 (see [16]). This completes the proof.  ◻

Function E� (x, t) is singular at the origin; thus, this fundamental solution for the heat equation is a generalized solu-
tion in D�

ev
(ℝn

+
).

The function E� (x, t) is non-negative, vanishes for t < 0 , is infinitely differentiable for (x, t) ≠ (0, 0) , and is locally 
integrable in ℝn+1

+
.

Let us consider spherical coordinates x = r� in ℝn
+
 , where r =

√
x2

1
+ x2

2
+ ... + x2

n
, � = (�1, ..., �n),

× �̃
ℝ

2n
+

exp
(
−

1

4t

(
(1 − �)|̃y �|2 + |̃y��|2)

)
|�̃(̃y)|

n∏
i=1

y
�i−1

2i
dỹ ≤

≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
1

4t

�
1

�
−1

�
�x�2

t
n+���

2

×

× ∫̃
ℝ

2n
+

exp
(
−

1 − �

4t

(|̃y �|2 + |̃y��|2)
)
|�̃(̃y)|

n∏
i=1

y
�i−1

2i
dỹ.

�I� ≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
1

4t

�
1

�
−1

�
�x�2

t
n+���

2

×

×∫
ℝ

n
+

�

∫
0

...

�

∫
0

e
−

1−�

4t
|y|2 |�(y)|

n∏
i=1

sin�i−1 �i d�iy
�dy =

=
1

2���
n∏

i=1

Γ
�

�i+1

2

� e
1

4t

�
1

�
−1

�
�x�2

t
n+���

2
∫
ℝ

n
+

e
−

1−�

4t
�y�2 ��(y)�y�dy.

�

∫
0

...

�

∫
0

n∏
i=1

sin�i−1 �i d�i = �
n

2

n∏
i=1

Γ
(

�i

2

)

Γ
(

�i+1

2

)

�1 = cos�1

�2 = sin�1 cos�2

�3 = sin�1 sin�2 cos�3

⋮

�n−1 = sin�1 ⋯ sin�n−2 cos�n−1

�n = sin�1 ⋯ sin�n−2 sin�n−1.
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When x�dx = rn+|�|−1��dS.Writing the integral ∫
ℝ

n
+

E� (x, t)x�dx in spherical coordinates:{x = r�} and using Eq. 8, for t > 0 , 

we obtain the following:

So we get the averaging property of the kernel E� (x, t):

Also, we have

Generalized convolution and non‑homogeneous singular heat equation

The solution to the Cauchy problem for the singular heat equation is obtained by convolving in the sense of Eq. 4 the 
fundamental solution E� (x, t) with the initial data by variable x. The solution to the Cauchy problem for the inhomogene-
ous singular heat equation is constructed by the Hankel transform method.
Using properties of E� from “Fundamental solution to the singular heat equation,” we obtain the following result.

Theorem 1 If �(x) is a continuous function on ℝn
+
 satisfying for some constant a > 0 to the inequality

then the generalized convolution Eq. 4, taking by x:

is defined for all (x, t) ∈ ℝ
n
+
×[0, T] , T =

1

4a
 , indefinitely differentiable on ℝn

+
×(0, T] , and has an even continuation by each 

variable x1, ..., xn.

∫
ℝ

n
+

E� (x, t)x�dx =
t
−

n+���
2

2���
n∏

i=1

Γ
�

�i+1

2

� ∫
ℝ

n
+

e
−

�x�2
4t x�dx =

=
t
−

n+���
2

2���
n∏

i=1

Γ
�

�i+1

2

�
∞

∫
0

e
−

r2

4t rn+���−1dr ∫
S+

1
(n)

��dS =

=
t
−

n+���
2

2���
n∏

i=1

Γ
�

�i+1

2

� ⋅ 2n+���−1Γ

�
n + ���

2

�
t
�+n

2 ⋅

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+���
2

� = 1.

∫
ℝ

n
+

E� (x, t)x�dx = 1.

E� (x, t) → �� (x), t → +0 in D
�
ev
(ℝn

+
).

(18)A = ∫
ℝ

n
+

e−a|x|2 |𝜑(x)| x𝛾dx < ∞, x ∈ ℝ
n
+

,

(19)(G
�
t �)(x) = (E� ∗ �)� (x) = ∫

ℝ
n
+

E� (y, t)(�Ty
x
�)(x)y�dy = ∫

ℝ
n
+

(�Ty
x
E� (x, t))�(y)y�dy
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The following properties are valid: 

1. |(G�
t �)(x)| ≤ Cn,� (A) exp(2a|x|2) for 0 < t <

T

2
=

1

8a
 , Cn,� (A) is some constant;

2. (Δ� )x(G
�
t �)(x)=

�

�t
(G

�
t �)(x) for 0 < t < T;

3. (G
�
t �)(x) tends to �(x) uniformly on each compact subset of ℝn

+
 as t tends to zero from the right: (G�

t �)(x) ⇉ �(x) , 
t → +0.

Proof Let us notice that generalized translation �Ty
x
 is self-adjoint with weight x� (see [16]), so

and since t < a

4
 we can take 𝜀 > 0 in Eq. 15 such that

That gives

Whereby Eq. 18 yields

It was taken into account here that T =
1

4a
 . This estimate and the form of E� (x, t) give that (G�

t �)(x) is defined for all 
(x, t) ∈ ℝ

n
+
×[0, T] , T =

1

4a
 , and indefinitely differentiable on ℝn

+
×[0, T] , and has an even continuation by each variable 

x1, ..., xn.
For 0 < t <

1

8a
 from Eq. 20, we get property 1. Property 2 follows from the fact that function E� (x, t) is a fundamental 

solution of Eq. 11.
Applying change of variables Eq. 16 and using the same notations as in Lemma 1, we obtain

where �ℝ2n
+

= {�y ∈ ℝ
2n ∶ �y2i > 0, i = 1, ..., n} . In order to show property 3, we split the integral defining (G�

t �)(x) into two 
parts

(G
�
t �)(x) = (E� ∗ �)� (x) = ∫

ℝ
n
+

(�Ty
x
E� (x, t))�(y)y�dy

1 − �

4t
= a,⇒ � = 1 − 4at.

�������
�
ℝ

n
+

(�Ty
x
E� (x, t))�(y)y�dy

�������
≤ 1

2���
n∏

i=1

Γ
�

�i+1

2

� e
a

1−4at
�x�2

t
n+���

2
�
ℝ

n
+

e−a�y�2�(y)y�dy.

�(G�
t �)(x)�=

�������
�
ℝ

n
+

(�Ty
x
E� (x, t))�(y)y�dy

�������
≤ A

2���
n∏

i=1

Γ
�

�i+1

2

� e
a

1−4at
�x�2

t
n+���

2

=

(20)=
A

2���
n∏

i=1

Γ
�

�i+1

2

� e
1

4(T−t)
�x�2

t
n+���

2

.

(G
�
t �)(x) =

=
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� t
−

n+���
2 ∫̃

ℝ
2n
+

exp
�
−

1

4t

��x − ỹ ��2 + �̃y���2�
�
�̃(̃y)

n�
i=1

y
�i−1

2i
dỹ,
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where

We show that I1 ⇉ � and I2 ⇉ 0 for t → +0 on each compact subset of ℝn
+
.

Substituting x − ỹ � = z�
√

t , ỹ �� = z��
√

t , z = (z�, z��) ∈ ℝ
2n
+

 , z� = (z1, z3, ..., z2n−1) , z�� = (z2, z4, ..., z2n) in I1 , we obtain

For �z� ≤ 1√
t
 , the function �̃(x − z�

√
t, z��

√
t) is uniformly bounded. Returning back to the old variables y=(y1, ..., yn) , we 

get

The properties of the generalized translation (see [21]) give �T
√

ty
x

�(x) ⇉ �(x) for t → +0 . We should calculate

here, we use Eq. 8. Since

after elementary calculations, we get

(G
�
t �)(x) =

�−
n

2

2���
n∏

i=1

Γ
�

�i

2

� (I1 + I2),

I1 =
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� t
−

n+���
2 �

A+

exp
�
−

1

4t

��x − ỹ ��2 + �̃y���2�
�
�̃(̃y)

n�
i=1

y
�i−1

2i
dỹ,

I2 =
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� t
−

n+���
2 �

B+

exp
�
−

1

4t

��x − ỹ ��2 + �̃y���2�
�
�̃(̃y)

n�
i=1

y
�i−1

2i
dỹ,

A+ ={ỹ ∈ ℝ̃
2n
+

∶ �x − ỹ ��2 + �̃y���2 ≤ 1}, B+ = {ỹ ∈ ℝ̃
2n
+

∶ �x − ỹ ��2 + �̃y���2 ≥ 1}.

I1 =
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� ��
z∈ℝ̃2n

+ ∶�z�≤ 1√
t

�
e
−

�z�2
4 �̃(x − z�

√
t, z��

√
t)

n�
i=1

z
�i−1

2i
dz.

I1 =
1

2���
n∏

i=1

Γ
�

�i+1

2

� ��
y∈ℝn

+∶�y�≤ 1√
t

�
e
−

�y�2
4

�T
√

ty
x

�(x)y�dy.

��
y∈ℝn

+∶�y�≤ 1√
t

�
e
−

�y�2
4 y�dy = {y = r�} =

=

1√
t

∫
0

e
−

r2

4 rn+���−1dr ∫
S+

1
(n)

��dS =

n∏
i=1

Γ
�

�i+1

2

�

2n−1Γ
�

n+���
2

�

1√
t

∫
0

e
−

r2

4 rn+���−1dr;

lim
t→+0

1√
t

∫
0

e
−

r2

4 rn+���−1dr = 2���+n−1Γ

�
n + ���

2

�
,

I1 =
1

2���
n∏

i=1

Γ
�

�i+1

2

� ��
y∈ℝn

+∶�y�≤ 1√
t

�
e
−

�y�2
4

�T
√

ty
x

�(x)y�dy ⇉ �(x), t → +0.
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Now, let us consider I2 . Splitting the exponential into two equal parts, taking into account that |x − ỹ �|2 + |̃y��|2 ≥ 1 , we 
obtain

By Eq. 17 we get for all 𝜀 > 0

Putting � = 1 + 8at , we can write

This completes the proof.  ◻

Operator G�
t  is called singular thermal potential with density � = �(x).

Corollary 1 Let Ω be a bounded simply connected domain in ℝn
+
 and � be a continuous and bounded function in Ω , then

�I2� ≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� t
−

n+���
2 ×

×�
B+

e
−

1

8t
(|x−ỹ �|2+|̃y��|2)e−

1

8t
(|x−ỹ �|2+|̃y��|2)|�̃(̃y)|

n∏
i=1

y
�i−1

2i
dỹ ≤

≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
−

1

8t

t
n+���

2
�
B+

e
−

1

8t
(�x−ỹ ��2+�̃y���2)��̃(̃y)�

n�
i=1

y
�i−1

2i
dỹ.

exp
(
−

1

8t

(|x − ỹ �|2 + |̃y��|2)
) ≤ exp

(
−

1

8t

((
1 −

1

�

)
|x|2 + (1 − �)|̃y �|2 + |̃y��|2

))
.

�I2� ≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
−

1

8t e
−

1

8t

�
1−

1

�

�
�x�2

t
n+���

2
�
B+

e
−

1

8t
((1−�)�̃y ��2+�̃y���2)��̃(̃y)�

n�
i=1

y
�i−1

2i
dỹ ≤

≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
−

1

8t e
−

1

8t

�
1−

1

�

�
�x�2

t
n+���

2
�
B+

e
−

1−�

8t
(�̃y ��2+�̃y���2)��̃(̃y)�

n�
i=1

y
�i−1

2i
dỹ =

=
�−

n

2

2���
n∏

i=1

Γ
�

�i

2

� e
−

1

8t e
−

a

1+8at
�x�2

t
n+���

2
�
B+

e−a�̃y�2 ��̃(̃y)�
n�

i=1

y
�i−1

2i
dỹ ≤

≤ �−
n

2

2���
n∏

i=1

Γ
�

�i

2

� e
−

1

8t e
−

a

1+8at
�x�2

t
n+���

2
�̃
ℝ

2n
+

e−a�̃y�2 ��̃(̃y)�
n�

i=1

y
�i−1

2i
dỹ =

≤ 1

2���
n∏

i=1

Γ
�

�i+1

2

� e
−

1

8t e
−

a

1+8at
�x�2

t
n+���

2
�
ℝ

n
+

e−a�x�2 ��(x)� x�dx =

=
1

2���
n∏

i=1

Γ
�

�i+1

2

� Ae
−

1

8t e
−

a

1+8at
�x�2

t
n+���

2

⇉ 0, t → +0.
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is a solution to the Cauchy problem for the multidimensional singular heat equation

Cauchy problem for the multidimensional singular heat equation was studied in [22].
Using the fundamental solution E� (x, t) of the operator (Δ� )x −

�

�t
 , one can construct a solution to the equation

with an arbitrary right-hand side f. More precisely, if f ∈ D
�
ev

 is such that the generalized convolution (E� (x, t) ∗ f (x))� 
exists in D′

ev
 , then the solution to equation Eq. 22 exists in D′

ev
 and is given by the formula (E� (x, t) ∗ f (x))� . This solution 

is unique in the class of weighted generalized functions from D′
ev

 for which this generalized convolution exists.

Semigroup view to singular thermal potential and Balakrishnan formulas

Let us consider the operator G�
t  defined by Eq. 19:

For t > 0 , this operator acts

where Cb(ℝ
n
+
) is the class of bounded continuous functions, admitting even continuation by each of the variables x1, ..., xn.

Theorem 2 Let Ω be a bounded simply connected domain in ℝn
+
 , � ∈ Cb(ℝ

n
+
) , then G�

t � satisfies semigroup properties 

1. G
�

0
� = �,

2. G
�
t1+t2

� = G
�
t1
◦G

�
t2
�.

Proof By Corollary 1, we get G�

0
� = lim

t→+0
G

�
t � = �, i.e., G�

0
= I is the identity operator.

Using properties (7.1), (7.3), and (7.5) from [21], we get

Now, we compute G�
t1+t2

 directly using Eq. 14

u(x, t) = (G
�
t �)(x) = (E� ∗ �)� (x) = ∫

ℝ
n
+

E� (y, t)(�Ty
x
�)(x)y�dy

(21)
{

(Δ� )xu(x, t) = ut(x, t),

u(x, 0) = �(x).

(22)(Δ� )xu(x, t) − ut(x, t) = f (x)

(G
�
t �)(x) = ∫

ℝ
n
+

E� (y, t)(�Ty
x
�)(x)y�dy = ∫

ℝ
n
+

(�Ty
x
E� (x, t))�(y)y�dy.

G
�
t ∶ Cb(ℝ

n
+
) → Cb(ℝ

n
+
),

∫
ℝ

n
+

( �T
z
y
E� (y, t1))(

�
T

z
x
E� (x, t2)) z�dz = ∫

ℝ
n
+

( �T
y
z
E� (z, t1))(

�
T

z
x
E� (x, t2)) z�dz =

= ∫
ℝ

n
+

E� (z, t1)(
�
T

y
z
�
T

z
x
E� (x, t2)) z�dz = ∫

ℝ
n
+

E� (z, t1)(
�
T

y
x
�
T

z
x
E� (x, t2)) z�dz =

= �
T

y
x ∫
ℝ

n
+

E� (z, t1)(
�
T

z
x
E� (x, t2)) z�dz = ( �T

y
x
E� (x, t1 + t2)).

684



 (2024) 280:672–691Journal of Mathematical Sciences     

That gives semigroup property 2 for G�
t  , which completes the proof.  ◻

So G�
t  is a semigroup ℝn

+
 . Let function u(x, t) satisfy (Δ� )xu(x, t) = ut(x, t) . If the initial values u(x, 0) = �(x) imply that

Since solution u(x, t) = (G
�
t �)(x) we have

So Δ� is the infinitesimal generator of the semigroup G�
t  and G�

t Δ�� = Δ�G
�
t � , � ∈ D((Δ� )x).

So taking into account the general semigroup theory, we obtain a contracting semigroup

with the property lim
�→∞

J
�

�
� = �.

Now, we can construct the fractional powers of (−Δ� )
�

2 in terms of the so-called Balakrishnan integral formula [23]. 
Namely, for representation the positive fractional power (−Δ� )

� , � ∈ (0, 1) , in case of the infinitesimal generator Δ� of a 
semigroup G�

t  , t ≥ 0 , we can use formula

In the case 𝛼 > 1 , this formula can be written with the usage of “finite differences”  (I − G
�
t )

� , � = [�] + 1:

where A�(�) =
�∑

k=0

(−1)k−1

�
�

k

�
=

�∑
k=0

(−1)k−1 �!

k!(�−k)!
.

The negative power of the operator (−Δ� ) for � ∈ (0, 1) can be defined by equality

(G
�
t1+t2

�)(x) =∫
ℝ

n
+

E� (y, t1 + t2)(
�Ty

x
�)(x)y�dy = ∫

ℝ
n
+

(�Ty
x
E� (x, t1 + t2))�(y)y

�dy =

=∫
ℝ

n
+

�(y)

⎛⎜⎜⎜⎝
∫
ℝ

n
+

( �Tz
x
E� (x, t1))(

�Tz
y
E� (y, t2)) z�dz

⎞⎟⎟⎟⎠
y�dy =

=∫
ℝ

n
+

( �Tz
x
E� (x, t1))

⎛
⎜⎜⎜⎝
∫
ℝ

n
+

( �Tz
y
E� (y, t2))�(y)y

�dy

⎞
⎟⎟⎟⎠

z�dz = (Gt1
◦Gt2

)�(x).

lim
t→+0

u(x, t) − u(x, 0)

t
= ut(x, 0) = (Δ� )xu(x, 0) = (Δ� )x�(x).

lim
t→+0

1

t
(G

�
t − I)� = (Δ� )x�(x).

J
𝛾

𝜆
𝜑 =

∞

∫
0

𝜆e−𝜆sG𝛾
s
𝜑 ds, 𝜆 > 0

(23)(−Δ� )
�

2 � =
1

Γ(−�)

∞

∫
0

t
−

�

2
−1(G

�
t − I)� dt.

(24)(−Δ� )
�

2 � =
1

Γ(−�)A�(l)

∞

∫
0

t
−

�

2
−1(I − G

�
t )

�� dt,

(25)(−Δ� )
−

�

2 � =
1

Γ(�)

∞

∫
0

t
�

2
−1

G
�
t � dt.
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Parabolic Bessel potential

In this section, we consider the singular heat conduction operator of the form

and its negative fractional powers. The action of the operator T� in the images of the Hankel transform takes the form

So we can define the negative real power of T� as

When � = 0 , we get T0
�
�(x, t) = �(x, t) , so T0

�
= I is a unit operator.

Let us consider the function

It is easy to see (formula Eq. 10) that when � = 1 , we get a fundamental solution E1
�
(x, t) = E� (x, t) of Eq. 11.

Using spherical coordinates (r, �) and Lemma 1, we obtain

Therefore,

and we can introduce parabolic Bessel potential for the function �(x, t) in the form

T� = −(Δ� )x +
�

�t

FB[T��(x, t)](�, �) = (|�|2 − i�)FB[�(x, t)](�, �).

T𝛼
𝛾
𝜑(x, t) = F−1

B
(|x|2 − it)−

𝛼

2 FB[𝜑], 𝛼 > 0.

(26)E𝛼
𝛾
(x, t) = Cn,𝛾 (𝛼)

{
t
𝛼−n−|𝛾|

2
−1

e
−

|x|2
4t if t > 0;

0 if t ≤ 0,

Cn,� (�) =
1

2���Γ
�

�

2

� n∏
i=1

Γ
�

�i+1

2

� .

(FB)x,t[E
�
�
(x, t)](�, �) =

∞

∫
−∞

∫
ℝ

n
+

j� (x, �) ⋅ e−it�E�
�
(x, t) x� dx dt =

=Cn,� (�)

∞

∫
0

∫
ℝ

n
+

j� (x, �)
e
−it�−

�x�2
4t

t
n+���−�

2
+1

x� dx dt = {x = r�} =

=Cn,� (�)

∞

∫
0

e−it�

t
n+���−�

2
+1

⎛⎜⎜⎜⎝

∞

∫
0

e
−

r2

4t rn+���−1dr ∫
S+

1
(n)

j� (r�, �)�� dS

⎞⎟⎟⎟⎠
dt =

=
1

Γ
�

�

2

�
∞

∫
0

e−(���2−i�)tt
�

2
−1

dt = (���2 − i�)−
�

2 .

(FB)x,t[E
�
�
(x, t)](�, �) = (|�|2 − i�)−

�

2
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If for t > 0 we consider generalized Gauss-Weierstrass integral of the form (see [18], formula (15))

we can write

It is remarkable that another potential, namely, generalized Bessel potential (see [19]), can also be represented as a one-
dimensional integral of the generalized Gauss-Weierstrass integral (see [18], formula (21)).
A linear operator A has strong type (p, q)� , 1≤p≤∞ , 1≤q≤∞ it is defined on L�

p
 , has values from L�

q
 and and the following 

inequality is valid:

where constant K does not depend on f. We say that a linear operator A is an operator of weak type (p, q)� 
( 1 ≤ p ≤ ∞, 1 ≤ q < ∞ ) if

where K does not depend on f and � , 𝜆 > 0.
If q = ∞ , then a quasilinear operator A is an operator of weak type (p, q)� when it has strong type (p, q)�.
Marcinkiewicz’s interpolation theorem was proved in general form in [24]. Here, we give a special case of this theorem, 
adapted for estimating integrals with power-law weights.

Theorem 3 Let 1 ≤ pi ≤ qi < ∞ , ( i = 1, 2 ), q1 ≠ q2 , 0 < 𝜏 < 1 , 1

p
=

1−�

p1

+
�

p2

 , 1
q
=

1−�

q1

+
�

q2

 . If A is a linear operator of weak 
type (p1, q1)� and of weak type (p2, q2)� with norms K1 and K2 , respectivy, then A is an operator of strong type (p, q)� and

where M = M(� , �, p1, p2, q1, q2) and does not depend on f and A in any other way.

Theorem 4 Potential T�
�
� , 𝛼 > 0 , where � ∈ L�

p
(ℝn+1

+
) converges absolutely for 0 < 𝛼 < n + |𝛾| + 2 and 1 ≤ p <

n+|𝛾|+2

𝛼
.

Proof Let without loss of generality �(x, t)≥0 and

(T�
�
�)(x, t) =

∞

∫
−∞

∫
ℝ

n
+

E�
�
(y, �)( �Ty

x
�(x, t − �))y�dyd� =

=

∞

∫
−∞

∫
ℝ

n
+

(�Ty
x
E�
�
(x, t − �))�(y)y�dyd�.

(27)
(W�

t
�)(x) =

2−���
n∏

i=1

Γ
�

�i+1

2

� 1

t
n+���

2
∫
ℝ

n
+

e
−

�y�2
4t (�Ty

x
�(x))y�dy,

(T�
�
�)(x, t) =

1

Γ
(

�

2

)
∞

∫
0

�
�

2
−1((W�

�
)x�(x, t − �))d�.

(28)‖Af‖q,� ≤ K‖f‖p,� , ∀ f ∈ L�
p
,

�� (Af , �) ≤
�

K‖f‖p,�

�

�q

, ∀ f ∈ L�
p
,

(29)||Af ||q,� ≤ MK1−�
1

K�
2
||f ||p,� ,

‖�(x, t)‖p,�=

⎛⎜⎜⎜⎝
∫

ℝ
n+1
+

��(x, t)�px�dxdt

⎞⎟⎟⎟⎠

1∕p

=1.
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Taking some fixed number 𝜇 > 0 , we can decompose E�
�
(x, t) as

where

We have

where

The integral ( 1T
�
�
�)(x, t) converges absolutely almost everywhere for �∈L

�

1
(ℝn+1

+
) because 0<𝛼:

Here, we used the fact that

E�
�
(x, t) = 1E�

�
(x, t) + 2E�

�
(x, t) + 3E�

�
(x, t) + 3E�

�
(x, t),

1E𝛼
𝛾
(x, t) =

{
E𝛼
𝛾
(x, t) if |x| ≤ 𝜇 and t ∈ (0, 1);

0 if |x| > 𝜇,

2E𝛼
𝛾
(x, t) =

{
E𝛼
𝛾
(x, t) if |x| ≤ 𝜇 and t ≥ 1;

0 if |x| > 𝜇,

3E𝛼
𝛾
(x, t) =

{
E𝛼
𝛾
(x, t) if |x| ≤ 𝜇 and t ∈ (0, 1);

0 if |x| > 𝜇,

4E𝛼
𝛾
(x, t) =

{
E𝛼
𝛾
(x, t) if |x| > 𝜇 and t ≥ 1;

0 if |x| ≤ 𝜇.

(T�
�
�)(x, t) = ( 1

T
�
�
�)(x, t) + ( 2

T
�
�
�)(x, t) + ( 3

T
�
�
�)(x, t) + ( 4

T
�
�
�)(x, t),

(30)( j
T
�
�
�)(x, t) =

∞

∫
−∞

∫
ℝ

n
+

jE�
�
(y, �)( �Ty

x
�(x, t − �))y�dyd�, j = 1, 2, 3, 4.

|||(
1
T
�
�
�)(x, t)

||| ≤

≤ Cn,𝛾 (𝛼)

1

�
0

�
{y∈ℝn

+∶|y|<𝜇}
𝜏

𝛼−n−|𝛾|
2

−1
e
−

|y|2
4t |( 𝛾Ty

x
𝜑(x, t − 𝜏))|y𝛾dyd𝜏 ≤

≤ const

1

�
0

𝜏
𝛼−n−|𝛾|

2
−1

d𝜏

∞

�
0

e
−

r2

4t rn+|𝛾|−1dr = const

1

�
0

𝜏
𝛼

2
−1

d𝜏 < ∞

∞

∫
0

e
−

r2

4t rn+|�|−1dr = 2n+|�|−1Γ

(
n + |�|

2

)
t

n+|�|
2 .

|||(
1
T
�
�
�)(x, t)

||| ≤
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The integral ( 2T
�
�
�)(x, t) converges absolutely almost everywhere for �∈L

�

1
(ℝn+1

+
) because 0<𝛼<n+|𝛾|+2:

The integral ( 3T
�
�
�)(x, t) converges everywhere since for a function �∈L

�

1
(ℝn+1

+
) by the same reason as ( 1T

�
�
�)(x, t).

Let �∈L�
p
(ℝn+1

+
) , 1

p
+

1

p�
= 1 . Using Eq. 5, we obtain

since 1 ≤ p <
n+|𝛾|+2

𝛼
 . Thus, theorem is proved.  ◻

Theorem 5 The operator T�
�
 is bounded from L�

p
(ℝn+1

+
) to L�

q
(ℝn+1

+
) , where 1 < p <

n+|𝛾|+2

𝛼
 , q =

(n+|�|+2)p

n+|�|+2−�p
:

Proof To apply Marcinkiewicz’s theorem, we prove that the operators +T
�
�
= 1T

�
�
+ 3T

�
�
 and −T

�
�
= 2T

�
�
+ 4T

�
�
 (see (30)) have 

weak types (p1, q1)� and (p2, q2)� , where p1, q1, p2, q2 such that 1

p
=

1−�

p1

+
�

p2

 , 1
q
=

1−�

q1

+
�

q2

 , 0 < 𝜏 < 1 . For this, we obtain 
an estimate for

For this, it suffices to estimate

and apply inequality

≤ Cn,𝛾 (𝛼)

1

�
0

�
{y∈ℝn

+∶|y|<𝜇}
𝜏

𝛼−n−|𝛾|
2

−1
e
−

|y|2
4t |( 𝛾Ty

x
𝜑(x, t − 𝜏))|y𝛾dyd𝜏 ≤

≤ const

1

�
0

𝜏
𝛼−n−|𝛾|

2
−1

d𝜏

∞

�
0

e
−

r2

4t rn+|𝛾|−1dr = const

1

�
0

𝜏
𝛼

2
−1

d𝜏 < ∞

|||(
2
T
�
�
�)(x, t)

||| ≤

≤ Cn,𝛾 (𝛼)

∞

�
1

�
{y∈ℝn

+∶|y|<𝜇}
𝜏

𝛼−n−|𝛾|
2

−1
e
−

|y|2
4t |( 𝛾Ty

x
𝜑(x, t − 𝜏))|y𝛾dyd𝜏 ≤

≤ const

∞

�
1

𝜏
𝛼−n−|𝛾|

2
−1

d𝜏 < ∞.

‖( 4
T
𝛼
𝛾
𝜑)(x, t)‖p�

p�
≤ const

∞

�
1

𝜏

�
𝛼−n−�𝛾�

2
−1

�
p�

d𝜏 < ∞

‖T�
�
�‖q,� ≤ Cn,�‖�‖p,� .

sup
0<𝜆<∞

𝜆(𝜇𝛾 (
±
T
𝛼
𝛾
𝜑, 𝜆))1∕p =

= sup
0<𝜆<∞

𝜆
(

mes𝛾{(x, t) ∈ ℝ
n+1
+

∶ |( ±T
𝛼
𝛾
𝜑(x, t)| > 𝜆}

)
.

(31)mes𝛾{(x, t) ∈ ℝ
n+1
+

∶ | j
T
𝛼
𝛾
𝜑(x, t)| > 𝜆}, j = 1, 2, 3, 4

mes𝛾{(x, t) ∈ ℝ
n+1
+

∶ |A + B| > 2𝜆} ≤
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But estimates for Eq. 31 are obtained from Eq. 2 and from theorem 4. Thus, the proof follows by the Marcinkiewicz 
interpolation theorem 3.  ◻

Parabolic Bessel potential can be used to solve iterated non-homogeneous equation

Conclusion

In this paper, we constructed and studied a solution for the singular parabolic differential equation (Δ� )xu(x, t) = ut(x, t) , 
where Δ� =

n∑
i=1

B�i
 is Laplace-Bessel operator, B�i

=
�2

�x2
i

+
�i

xi

�

�xi

 , i = 1, ..., n . Using fundamental solution, we define singular 

thermal potential which is a solution to the Cauchy problem for the multidimensional singular heat equation. We obtained 
semigroup properties of operator G�

t  and constructed fractional powers of (−Δ� ) using Balakrishnan formulas. The last 
section of this paper deals with the description of the negative real power of a singular parabolic operator. This operator 
is called parabolic Bessel potential. The singularity of this potential is generated by the singular Bessel differential opera-
tor. The boundedness of this potential is proved here. The approach to the study of parabolic Bessel potentials involves 
the Fourier-Bessel transform and the Marcinkiewicz interpolation theorem.
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