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Abstract—In physics, the singular heat equation with the Bessel operator is used to explain
the basic process of heat transport in a substance with spherical or cylinder symmetry. This
paper examines the solution of the Cauchy problem for the heat equation with the Bessel
operator acting in the space variable. We obtain some properties of the solution and consider
the normalized modified Bessel function of the first kind.
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INTRODUCTION

Partial differential equations are ubiquitous as mathematical models in the scientific and engi-
neering areas. We consider the singular heat equation(

∂2

∂x2
+

γ

x

∂

∂x

)
u(x, t) =

∂

∂t
u(x, t),

where ∂2

∂x2 +
γ
x

∂
∂x

is called the Bessel operator . Many problems of physical interest are described by
partial differential equations with the Bessel operator, in particular, the radial component of the
Laplacian in all dimensions is described by the Bessel operator.

Terminology referring to partial differential equations with Bessel operators belongs to I.A. Kip-
riyanov [1, 2]. According to this terminology

∑n

i=1(Bγi
)xi

u=f is classified as B-elliptic, the equa-
tion ∂

∂x1
u−

∑n

i=2(Bγi
)xi

u=f is classified as B-parabolic, the equation (Bγ1
)x1

u−
∑n

k=2(Bγi
)xi

u=f
is classified as B-hyperbolic. Such equations were studied mainly by the integral transforms
method. B-elliptic equations has been studied in [2–4]. B-hyperbolic equations were investigated
in [1, 5–7]. Different problem for B-parabolic equations were solved in [8–10]. We note separately
that the general Euler–Poisson–Darboux equation was considered in [11, 12].

In this paper, we consider a solution of the Cauchy problem for the singular heat equation, its
connection with the classical case, and its properties. The general behaviour of functions under
singular heat flow is the flattening we will see in the fundamental solution, which goes from a sharp
spike to a flat line as t tends to infinity. Next, we construct polynomial solutions. Polynomial
solutions are frequently used as building blocks in algorithms in order to find closed-form solutions.
Also, the property of closeness related to the singular heat equation function iν was given. In
particular, this function has reproducing kernel property and is an operator function for generalized
translation.

1. PRELIMINARY

Different techniques for working with the Bessel operator were developed by I.A. Kipriyanov [2],
B.M. Levitan [13], S.S. Platonov [14] and others. Among these techniques, Hankel transform has
been recognized as one of the most popular method for solution partial differential equations with
the Bessel operator. The special convolution should be used in order to convolution of two functions
be the pointwise product of their Hankel transforms. This convolution based on so called generalized
translation. In this section we give some elements of harmonic analysis with the Bessel operator.

Suppose that R+ = (0,∞), Ω be finite or infinite interval in R symmetric with respect to the
origin, Ω+ = Ω ∩ R+. We deal with the class Cm(Ω+) consisting of m times differentiable on Ω+
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ON SINGULAR HEAT EQUATION 1709

functions and denote by Cm(Ω+) the subset of functions from Cm(Ω+) such that all derivatives of
these functions are continuous up to the origin. Class Cm

ev(Ω+) consists of all functions from Cm(Ω+)
such that f (2k+1)(0) = 0 for all non-negative integer k ≤ m−1

2
. Let Cev,b(R+) be the space of all

bounded continuous functions, continuously extendable to negative values of the variable x as even
functions, on Ω+.

Let Bγ denote the Bessel operator. Its action on C2
ev(R0) is given by

Bγ =
d2

dx2
+

γ

x

d

dx
. (1)

If the initial temperature is an power function with even integer positive power, then the convolution
with the fundamental solution gives the singular heat polynomial.

Suppose that γ > 0. Lγ
p(R+) = Lγ

p , 1≤p<∞ is the space of all measurable in R+ functions such
that

∞∫
0

∣∣f(x)∣∣pxγdx < ∞.

For a real number p ≥ 1, the Lγ
p–norm of f is defined by

∥f∥p,γ =

 ∫
Rn

+

∣∣f(x)∣∣pxγ dx


1/p

.

It is known that Lγ
p is a Banach space [2].

Let consider the space with positive weighted measure mesγ . For a scalar valued measurable
function f that takes finite values almost everywhere we define

µγ(f, t) = mesγ

{
x ∈ (0,∞) :

∣∣f(x)∣∣ > t
}
=

∫
{x: |f(x)|>t}+

xγ dx,

where {x:|f(x)|>t}+={x∈(0,∞):|f(x)|>t}.
Space Lγ

∞(R+)=Lγ
∞ is the space of all measurable in R+ functions, continuously extendable to

negative values of the variable x as even functions, for which the norm

∥f∥∞,γ = ess supγ
x∈Rn

+

∣∣f(x)∣∣ = inf
a∈R

{
µγ(f, a) = 0

}
is finite.

The Hankel transform of a function f∈Lγ
1(R+) is expressed as

Fγ [f ](ξ) = f̂(ξ) = Fγ

[
f(x)

]
(ξ) = f(ξ) =

∞∫
0

j γ−1
2
(xξ) f(x)xγ dx, (2)

where γ > 0, the symbol jν is used for the normalized Bessel function of the first kind :

jν(x) =
2νΓ(ν + 1)

xν
Jν(x) =

∞∑
m=0

(−1)mΓ(ν + 1)

m! Γ(m+ ν + 1)

(x
2

)2m

,

and Jν is Bessel function of the first kind. The function j γ−1
2

is eigenfunction of the operator Bγ :

(Bγ)xj γ−1
2
(xξ) = −ξ2j γ−1

2
(xξ),

such that j γ−1
2
(0) = 1, j′γ−1

2

(0) = 0. By definition we put jν(x) = jν(−x).
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1710 SHISHKINA, YUSUPOVA

The inversion formula

F−1
γ

[
f̂(ξ)

]
(x) = f(x) =

21−γ

Γ2

(
γ+1

2

) ∞∫
0

j γ−1
2
(xξ) f̂(ξ) ξγ dξ (3)

holds.
The generalized translation associated with the Bessel operator is defined by the equality [13]

( γT y
x f)(x)=

γT y
x f=C(γ)

π∫
0

f
(√

x2 + y2 − 2xy cosφ
)
sinγ−1 φdφ,

where C(γ) =
Γ( γ+1

2 )
√
πΓ( γ

2 )
. For γ = 0 generalized translation γT y

x is ( 0T y
x f)(x) =

f(x+y)+f(x−y)

2
.

In [13] was shown that u(x, y) = ( γT y
x f)(x) is a unique solution of the Cauchy problem

(Bγ)xu(x, y) = (Bγ)yu(x, y),

u(x, 0) = f(x),
∂

∂y
u(x, y)

∣∣∣∣
y=0

= 0.

For the generalized translation operator γT y
x the representation [15]

( γT y
x f)(x)=

2γC(γ)

(4xy)γ−1

x+y∫
|x−y|

zf(z)
[(
z2 − (x− y)2

)(
(x+ y)2 − z2

)] γ
2 −1

dz (4)

is valid.
Hankel transform from generalized translation of function f∈Lγ

1(R+) has a form

Fγ

[
( γT y

x f)(x)
]
(ξ) = j γ−1

2
(yξ)Fγ [f ](ξ). (5)

The generalized convolution, generated by the generalized translation γT y
x is

(f ∗ g)γ(x) =
∞∫
0

f(y) γT y
x g(x)y

γ dy. (6)

Hankel transform applied to generalized convolution is

Fγ

[
(f ∗ g)γ(x)

]
(ξ) = Fγ

[
f(x)

]
(ξ)Fγ

[
g(x)

]
(ξ).

Let Sev is a class of Schwarz functions on R+, admitting an even continuation to (−∞, 0]. The
space of weighted generalized functions S′

ev is a class of continuous linear functionals that map a set
of test functions φ ∈ Sev into the set of real numbers. Each function u ∈ Lγ

1,loc will be identified
with the functional u ∈ S′

ev acting according to the formula

(u, φ)γ =

∞∫
0

u(x)φ(x)xγ dx, φ ∈ Sev. (7)

Generalized functions u ∈ S′
ev acting by the formula (7) will be called regular weighted generalized

functions. All other generalized functions u ∈ S′
ev will be called singular weighted generalized

functions.
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ON SINGULAR HEAT EQUATION 1711

Weighted delta-function δγ ∈ S′
ev is defined by the equality

(δγ , φ)γ = φ(0), φ ∈ Sev. (8)

2. GENERALIZED TRANSLATION OF A NONSTATIONARY
EXPONENTIAL-SQUARED KERNEL

Nonstationary exponential-squared kernel is given by e±
x2

4t . In this section we obtain a new
kernel applying the generalized translation to e±

x2

4t and
The heat kernel

H(x, y, t) =
1

2
√
πt

e−
(x−y)2

4t , x, y ∈ R, t > 0,

solves the heat equation Ht = Hxx for all t > 0 and x, y ∈ R, with the initial condition

lim
t→0

H(x, y, t) = δ(x− y). (9)

Also for every smooth function φ with compact support we have

lim
t→0

∫
R

H(x, y, t)φ(y) dy = φ(x).

When we deal with singular heat equation Ht = BγH we should apply the generalized transla-
tion γT y

x to e−
x2

4t instead of regular shift. So we need to obtain the following statement.

Statement 1. The generalized translation γT y
x of e± x2

4t , x, y, t > 0 is

γT y
x e

± x2

4t = e±
x2+y2

4t i γ−1
2

(xy
2t

)
, (10)

where iν is the normalized modified Bessel function of the first kind defined by the formula

iν(x) =
2νΓ(ν + 1)

xν
Iν(x) =

∞∑
m=0

Γ(ν + 1)

m! Γ(m+ ν + 1)

(x
2

)2m

(11)

and Iν is modified Bessel function of the first kind.

Proof. Using the formula (4) we obtain

γT y
x e

± x2

4t =
2γC(γ)

(4xy)γ−1

x+y∫
|x−y|

ze±
z2

4t

[(
z2 − (x− y)2

)(
(x+ y)2 − z2

)] γ
2 −1

dz = {z2 = ζ}

=
2γ−1C(γ)

(4xy)γ−1

(x+y)2∫
(x−y)2

e±
ζ
4t

[(
ζ − (x− y)2

)(
(x+ y)2 − ζ

)] γ
2 −1

dζ.

Next, for γT y
x e

− x2

4t we set ζ − (x− y)2 = w and for γT y
x e

x2

4t we set (x+ y)2 − ζ = w,

γT y
x e

− x2

4t =
2γ−1C(γ)

(4xy)γ−1
e−

(x−y)2

4t

4xy∫
0

e−
w
4t

[
w(4xy − w)

] γ
2 −1

dw,

γT y
x e

x2

4t =
2γ−1C(γ)

(4xy)γ−1
e

(x+y)2

4t

4xy∫
0

e−
w
4t

[
w(4xy − w)

] γ
2 −1

dw.
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Applying the formula 2.3.6.2 in [16] we can find the integral

4xy∫
0

e−
w
4t

[
w(4xy − w)

] γ
2 −1

dw = 22γ−2
√
πe−

xy
4t (xyt)

γ−1
2 Γ

(γ
2

)
I γ−1

2

(xy
2t

)
.

So, we obtain

γT y
x e

− x2

4t =
2γ−1C(γ)

(4xy)γ−1
e−

(x−y)2

4t 22γ−2
√
πe−

xy
4t (xyt)

γ−1
2 Γ

(γ
2

)
I γ−1

2

(xy
2t

)
= e−

x2+y2

4t i γ−1
2

(xy
2t

)
,

γT y
x e

x2

4t =
2γ−1C(γ)

(4xy)γ−1
e

(x+y)2

4t 22γ−2
√
πe−

xy
4t (xyt)

γ−1
2 Γ

(γ
2

)
I γ−1

2

(xy
2t

)
= e

x2+y2

4t i γ−1
2

(xy
2t

)
.

The function i γ−1
2

is an eigenfunction of the Bessel operator Bγ ,

(Bγ)t i γ−1
2
(τt) = τ 2i γ−1

2
(τt),

such that i γ−1
2
(0) = 1, i′γ−1

2

(0) = 0. By definition, we put iν(x) = iν(−x).

The generalized translation of i γ−1
2
(x) is [15]

γT y
x i γ−1

2
(xz) = i γ−1

2
(xz)i γ−1

2
(yz).

Statement 2. The reproducing kernel property for i γ−1
2

is valid:

∞∫
0

i γ−1
2

(2xy) i γ−1
2

(2xz) e−x2

dµγ(x) = ey
2+z2

i γ−1
2

(2yz) ,

where the measure dµγ(x) is

dµγ(x) =
2

3−γ
2

Γ

(
γ + 1

2

)xγ dx.

Proof. We have

∞∫
0

i γ−1
2

(2xy) i γ−1
2

(2xz) e−x2

dµγ(x)

=
2

3−γ
2

Γ

(
γ + 1

2

) ∞∫
0

i γ−1
2

(2xy) i γ−1
2

(2xz) e−x2

· xγ dx =
2

3−γ
2

Γ

(
γ + 1

2

) ∞∫
0

γT z
y i γ−1

2
(2xy) · e−x2

· xγ dx

=
2

3−γ
2

Γ

(
γ + 1

2

) γT z
y

∞∫
0

i γ−1
2

(2xy) · e−x2

· xγ dx = 2 · γT z
y y

1−γ
2

∞∫
0

I γ−1
2

(xy) · e−x2

· x
γ+1
2 dx.

Since
∫∞
0

I γ−1
2

(2xy) · e−x2 · x γ+1
2 dx = 1

2
ey

2

y
γ−1
2 , using Statement 1, we get

∞∫
0

i γ−1
2

(2xy) i γ−1
2

(2xz) e−x2

dµγ(x) =
γT z

y e
y2

= ey
2+z2

i γ−1
2

(2yz) .
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ON SINGULAR HEAT EQUATION 1713

3. SOLUTION OF THE SINGULAR HEAT EQUATION AND ITS PROPERTIES

In this section we consider the singular heat operator

Hγ := (Bγ)x − ∂t, (12)

where Bγ is defined by (1) on function spaces C2
ev(Ω× (0, T ), T > 0, Ω ⊂ R+.

The direct verification gives that the function

Eγ(x, t) =

A(γ)t−
1+γ
2 e−

x2

4t if t > 0

0 if t ≤ 0,
A(γ) =

1

2γΓ

(
γ+1

2

) .

is a solution of the singular heat equation Hγu(x, t)=0 on R+×(0,∞). The constant A(γ) is chosen
such that

∞∫
0

Eγ(x, t)x
γ dx = 1, t > 0.

Also we have
Eγ(x, t) → δγ(x), t → +0 in S′

ev,

where δγ is given by (8).
Let φ ∈ Cev,b(R+), then

u(x, t) = (Gγ
tφ)(x) = (Eγ ∗ φ)γ(x) =

∞∫
0

(γ
T y
xEγ(x, t)

)
φ(y)yγ dy (13)

is a solution in R+ of the Cauchy problem for the singular heat equation(Bγ)xu(x, t) = ut(x, t)

u(x, 0) = φ(x).
(14)

In (13) we use generalized translation (6). Then, taking into account (10), for t > 0 we obtain

Γγ(x, y, t) :=
γT y

xEγ(x, t) = A(γ)t−
1+γ
2 e−

x2+y2

4t i γ−1
2

(xy
2t

)
, (15)

and for t > 0 the solution (13) of the Cauchy problem for the singular heat equation (14) becomes

u(x, t) = A(γ)t−
1+γ
2

∞∫
0

e−
x2+y2

4t i γ−1
2

(xy
2t

)
φ(y)yγ dy =

∞∫
0

Γγ(x, y, t)φ(y)y
γ dy. (16)

The function Γγ(x, y, t) is the generalized heat kernel . Given y > 0, the function u(x, t) = Γγ(x, y, t)
solves the generalized heat equation Hγu = 0.

We can write the equality corresponding to (9):

lim
t→0

Γγ(x, y, t) =
γT y

x δγ(x).

Statement 3. The function Γγ(x, y, t) has the following properties for x, y, t > 0:

1.
∫∞
0

Γγ(x, y, t)x
γ dx = 1.

2. |Γγ(x, y, t)| ≤ Cγt
− γ

2 e−
(x−y)2

4t .
3.
∫∞
0

Eγ(y, s)Γγ(x, y, t)y
γ dy = Eγ(x, t+ s), t, s > 0.
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Proof.
1. Indeed, using the formula [13]

∞∫
0

γT y
x f(x)g(y)y

γ dy =

∞∫
0

f(y) γT y
x g(x)y

γ dy,

we obtain
∞∫
0

Γγ(x, y, t)x
γ dx =

∞∫
0

γT y
xEγ(x, t) · xγ dx =

∞∫
0

γEγ(x, t) · xγ dx = 1.

2. Using the property of Iν , we obtain

∣∣Γγ(x, y, t)
∣∣ = ∣∣∣∣∣A(γ)t−

1+γ
2 e−

x2+y2

4t i γ−1
2

(
xy

2t

)∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣A(γ)t−
1+γ
2 e−

x2+y2

4t · e
xy
4t

1√
2π · xy

2t

∣∣∣∣∣∣∣∣ ≤ Cγt
− γ

2 e−
(x−y)2

4t .

3. Let us find Hankel transform of Eγ(x, t) by x for t > 0,

(Fγ)x
[
Eγ(x, t)

]
(ξ, t) =

∞∫
0

Eγ(x, t) j γ−1
2
(xξ)xγ dx

=

2
γ−1
2 Γ

(
γ + 1

2

)
ξ

γ−1
2

· 1

2γΓ

(
γ+1

2

) t−
1+γ
2

∞∫
0

e−
x2

4t J γ−1
2
(xξ)x

γ+1
2 dx

=
ξ

1−γ
2

(2t)
1+γ
2

∞∫
0

e−
x2

4t J γ−1
2
(xξ)x

γ+1
2 dx.

Using formula 2.12.9.3 in [16] we obtain

(Fγ)x
[
Eγ(x, t)

]
(ξ, t) =

ξ
1−γ
2

(2t)
1+γ
2

· 2
γ+1
2 ξ

γ−1
2

1

t−
γ+1
2

e−tξ2 = e−tξ2 .

Therefore,
(Fγ)x

[
Eγ(x, t)

]
(ξ, t) = e−tξ2 . (17)

Next, for t > 0 using (17) we can write

(Fγ)x

∞∫
0

Eγ(y, s)Γγ(x, y, t)y
γ dy = (Fγ)x

∞∫
0

Eγ(y, s)
(
γT y

xEγ(x, t)
)
yγ dy

= (Fγ)x
[
Eγ(x, t)

]
(ξ, t)(Fγ)x

[
Eγ(x, s)

]
(ξ, s)=e−tξ2e−sξ2 =e−(t+s)ξ2 .

So, taking into account (17) we obtain
∞∫
0

Eγ(y, s)Γγ(x, y, t)y
γ dy = (Fγ)

−1
ξ e−(t+s)ξ2 = Eγ(x, t+ s).
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For φ ∈ Cev,b(R+), consider the operator

Hγ
t φ(x) =


∞∫
0

Γγ(x, y, t)φ(y)y
γ dy if t > 0

φ(x) if t = 0.

From Statement 3 is follows that Hγ
t is well defined and continuous on (0,∞).

We have the following theorems to characterize Hγ
t .

Theorem 1. If φ ∈ Sev , then u(x, t) = Hγ
t φ(x) is a Schwartz function in x having a continuous

even continuation in x and sartisfying the Cauchy problem (14).

Proof. Indeed, u(x, t) satisfies Hγu(x, t)=0 since it is a generalized convolution with Eγ(x, t).
Let us show that for fixed x0 ∈ R+

lim
x→x0,t→+0

∞∫
0

(γ
T y
xEγ(x, t)

)
φ(y)yγ dy = φ(x0).

For any ε > 0 we can choose δ > 0 such that |φ(x)−φ(x0)| < ε for all x ∈ R+ such that |x−x0| < δ.
We have

∣∣u(x, t)− φ(x0)
∣∣ ≤ δ∫

0

(γ
T y
xEγ(x, t)

)∣∣φ(y)− φ(x0)
∣∣yγ dy +

∞∫
δ

(γ
T y
xEγ(x, t)

)∣∣φ(y)− φ(x0)
∣∣yγ dy.

Taking into account the fact that for z → ∞ we have Iν(z) ∼ ez√
2πz

, we see that the second integral
tends to zero:

∞∫
δ

(γ
T y
xEγ(x, t)

)∣∣φ(y)− φ(x0)
∣∣yγ dy

≤ 2∥φ∥∞,γ

∞∫
δ

γT y
xEγ(x, t) · yγ dy

= Ct−
1+γ
2 e−

x2

4t

∞∫
δ

e−
y2

4t i γ−1
2

(xy
2t

)
· yγ dy = C · 1

t
· e− x2

4t

∞∫
δ

e−
y2

4t I γ−1
2

(xy
2t

)
· y

γ+1
2 dy

≤ C · 1√
t
·

∞∫
δ

e−
(x−y)2

4t · y
γ+1
2 dy ≤ C · 1√

t
·

∞∫
δ

e−
(y−x0)2

16t · y
γ+1
2 dy

= C · t
γ+1
2 ·

∞∫
δ−x0
4
√

t

e−z2

· (z + x0)
γ+1
2 dz → 0, t → +0.

As for the first integral, we get

δ∫
0

(γ
T y
xEγ(x, t)

)∣∣φ(y)− φ(x0)
∣∣yγ dy ≤ ε

∞∫
0

Eγ(y, t)y
γ dy = ε;

therefore |u(x, t)− φ(x0)| < ε and lim
x→x0,t→+0

u(x, t) = φ(x0). So u(x, 0) = φ(x).
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From (17)

Eγ(x, t) = (F−1
γ )ξ

[
e−tξ2

]
(x) =

21−γ

Γ2

(
γ+1

2

) ∞∫
0

j γ−1
2
(xξ)e−tξ2ξγ dξ.

Then for t > 0, using the self-adjointness of generalized translation (see [13]) and (5), we obtain

Hγ
t φ(x) =

∞∫
0

(γ
T y
xEγ(x, t)

)
φ(y)yγ dy =

∞∫
0

Eγ(y, t)
γT y

xφ(x)y
γ dy

=
21−γ

Γ2

(
γ+1

2

) ∞∫
0

 ∞∫
0

j γ−1
2
(yξ)e−tξ2ξγ dξ

 γT y
xφ(x)y

γ dy

=
21−γ

Γ2

(
γ+1

2

) ∞∫
0

 ∞∫
0

j γ−1
2
(yξ) γT y

xφ(x)y
γ dy

 e−tξ2ξγ dξ

=
21−γ

Γ2

(
γ+1

2

) ∞∫
0

(Fγ)y
[
γT y

xφ(x)
]
(ξ) · e−tξ2ξγ dξ.

Using formula of the Hankel transform of generalized translation (see [15]), we obtain

Hγ
t φ(x) =

21−γ

Γ2

(
γ+1

2

) ∞∫
0

j γ−1
2
(xξ)Fγ

[
φ(x)

]
(ξ) · e−tξ2ξγ dξ =

21−γ

Γ2

(
γ+1

2

)Fγ

[
Fγ [φ](ξ) · e−tξ2

]
(x).

Since the Schwartz space is invariant under the Hankel transform, we see that Hγ
t φ is a Schwartz

function if φ is a Schwartz function. Also if φ is even, then Hγ
t φ is even too.

Theorem 2. If φ ∈ Sev , then u(x, t) = Hγ
t φ(x) has the following properties:

1. Hγ
t+sφ = Hγ

tHγ
sφ,

2. ∥Hγ
t φ− φ∥γ,∞ → 0, t → 0.

Proof.
1. To prove the semigroup property Hγ

t+sφ = Hγ
tHγ

sφ, note that for t, s > 0, by Statement 3

Hγ
t+sφ(x) =

∞∫
0

Γγ(x, y, t+ s)φ(y)yγ dy =

∞∫
0

γT y
xEγ(x, t+ s)φ(y)yγ dy

=

∞∫
0

γT y
x

 ∞∫
0

Eγ(z, s)Γγ(x, z, t)z
γ dz

φ(y)yγ dy

=

∞∫
0

 ∞∫
0

Eγ(z, s)
γT y

x
γT z

xEγ(x, t)z
γ dz

φ(y)yγ dy.

Next, using the associativity and self-adjointness of generalized translation (see [13]) we get

Hγ
t+sφ(x) =

∞∫
0

 ∞∫
0

Eγ(z, s)
γT y

z
γT z

xEγ(x, t)z
γ dz

φ(y)yγ dy
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=

∞∫
0

 ∞∫
0

γT y
z Eγ(z, s)

γT z
xEγ(x, t)z

γ dz

φ(y)yγ dy

=

∞∫
0

γT z
xEγ(x, t)

 ∞∫
0

γT y
z Eγ(z, s)φ(y)y

γ dy

 zγ dz

=

∞∫
0

Γγ(x, z, t)

 ∞∫
0

Γγ(y, z, s)φ(y)y
γ dy

 zγ dz = Hγ
tHγ

sφ(x).

2. Now consider the norm

∥Hγ
t φ− φ∥γ,∞ = ess supγ

x∈Rn
+

|Hγ
t φ− φ| ≤ Aγ

∞∫
0

(1− e−ty2

)yγdy → 0, t → 0.

4. POLYNOMIAL SOLUTION OF THE SINGULAR HEAT EQUATION

When we deal with infinite-dimensional Hilbert space of functions it is desirable to have an or-
thonormal basis which provides a connection of this Hilbert space with the space of weighted
squared-integrable sequences. This section is concerned with orthonormal systems of polynomials
which are associated with the Bessel operator. Polynomial solutions are important in the develop-
ment of numerical techniques.

Let consider the Cauchy problem for the singular heat equation when φ(x) = x2n, n ∈ N ∪ {0},
x > 0: (Bγ)xu(x, t) = ut(x, t)

u(x, 0) = x2n.

Using (16) and taking into account formula 2.15.5.4 in [16], we see that for t > 0

u(x, t) = A(γ)t−
1+γ
2

∞∫
0

e−
x2+y2

4t i γ−1
2

(xy
2t

)
y2n+γ dy =

1

2tx
γ−1
2

e−
x2

4t

∞∫
0

e−
y2

4t I γ−1
2

(xy
2t

)
y2n+ γ+1

2 dy

=
1

2tx
γ−1
2

e−
x2

4t

n!
( x

2t

) γ−1
2

2
γ+1
2

(
1

4t

)n+ γ+1
2

e
x2

4t L
γ−1
2

n

(
−x2

4t

)
=22nn!tnL

γ−1
2

n

(
−x2

4t

)
,

where Lα
n(z) is the generalized Laguerre polynomial defined by confluent hypergeometric functions

and Kummer’s transformation

Lα
n(z) :=

(
n+ α

n

)
M(−n, α+ 1, z);

here
(
n+α
n

)
is a generalized binomial coefficient. Kummer’s function of the first kind M is a gener-

alized hypergeometric series:

M(a, b, z) =

∞∑
n=0

a(n)zn

b(n)n!
= 1F1(a; b; z),

where a(0) = 1, a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1), is the rising factorial. Another form for these
generalized Laguerre polynomials of degree n is

Lα
n(x) =

n∑
i=0

(−1)i
(
n+ α

n− i

)
xi

i!
.
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Therefore, the polynomial solution of the singular heat equation is

u(x, t) = 22nn!tnL
γ−1
2

n

(
−x2

4t

)
. (18)

The generalized Laguerre polynomials Lα
n are orthogonal over [0,∞) with respect to the measure

with weighting function xαe−x:

∞∫
0

xαe−xLα
n(x)L

α
m(x) dx =

Γ(n+ α+ 1)

n!
δn,m,

where δn,m is the Kronecker delta.
So using polynomial solution (18) of the singular heat equation we can obtain a solution of the

Cauchy problem (14), if φ(x) =
∑∞

n=0 anx
2n, an ∈ R.

Example. Let us consider the problem(Bγ)xu(x, t) = ut(x, t)

u(x, 0) = cos(x).

Since cos(x) =
∑∞

n=0
(−1)n

(2n)!
x2n, taking into account (18), we immediately obtain

u(x, t) =

∞∑
n=0

(−1)n22nn!

(2n)!
tnL

γ−1
2

n

(
−x2

4t

)
.

5. FRACTIONAL POWER OF THE BESSEL OPERATOR

For some problems, it is convenient to use symbolic calculus with symbol Bγ ; for example, we
can use (Bγ)

n, n ∈ N, for the iterated operator:

(Bγ)
n = Bγ Bγ ... Bγ︸ ︷︷ ︸

n

.

Thus, taking into account (11), the generalized translation formula [13]

γT y
x f(x) =

∞∑
m=0

Γ

(
γ + 1

2

)
m!Γ

(
γ + 1

2
+m

) (y
2

)2m

(Bγ)
nf(x)

can be written in the form

γT y
x f(x) =

∞∑
m=0

Γ

(
γ + 1

2

)
m!Γ

(
γ + 1

2
+m

) (y
√

Bγ

2

)2m

f(x) = i γ−1
2

(
y
√

Bγ

)
f(x);

i.e., the normalized modified Bessel function of the first kind i γ−1
2
(y
√

Bγ) of the operator
√

Bγ is
the generalized translation.
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Let us explain how to understand
√

Bγ . In [17], a negative fractional power of Bγ was given in
the factorized form B−α

γ = F−1
γ (x−2αFγ), where x > 0, Fγ is the Hankel transform (2) and F−1

γ is
its inverse (3). We can write an explicit formula

(B−α
γ φ)(x) =

21−2αΓ

(
γ + 1

2
− α

)
Γ

(
γ + 1

2

)
Γ (α)

∞∫
0

( γT y
xφ)(x)x

2α−1 dy.

The operator B−α
γ is called the Bessel–Riesz fractional integral .

Positive fractional power of the Bessel operator Bγ for 0 < α < 1 is given then as the inverse
operator of B−α

γ by [17]

(
Bα

γφ
)
(x) =

1

dγ(α)

∞∫
0

φ(x)− ( γT y
xφ)(x)

y1+2α
dy, (19)

where

dγ(α) =

π Γ

(
γ + 1

2

)
22α+1 Γ

(
1 + γ

2
+ α

)
Γ

(
1

2
+ α

) 1

sinαπ
.

CONCLUSIONS

In this paper, our aim was to find and study the solution of the Cauchy problem for the singular
heat equation. In particular, we obtained a polynomial solution, which makes it possible to get
a solution of the singular heat equation with good enough initial values without having to evaluate
the generalized convolution.
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