
Fractional Calculus and Applied Analysis (2024) 27:2823–2858
https://doi.org/10.1007/s13540-024-00343-8

ORIG INAL PAPER

Fractional Wiener chaos: Part 1

Elena Boguslavskaya1 · Elina Shishkina2,3

Received: 29 June 2023 / Revised: 7 September 2024 / Accepted: 9 September 2024 /
Published online: 8 October 2024
© The Author(s) 2024

Abstract
In this paper, we introduce a fractional analogue of the Wiener polynomial chaos
expansion. It is important to highlight that the fractional order relates to the order
of chaos decomposition elements, and not to the process itself, which remains the
standard Wiener process. The central instrument in our fractional analogue of the
Wiener chaos expansion is the function denoted as Hα(x, y), referred to herein as
a power-normalised parabolic cylinder function. Through careful analysis of several
fundamental deterministic and stochastic properties, we affirm that this function essen-
tially serves as a fractional extension of the Hermite polynomial. In particular, the
power-normalised parabolic cylinder function with the Wiener process and time as its
arguments,Hα(Wt , t), demonstrates martingale properties and can be interpreted as a
fractional Itô integral with 1 as the integrand, thereby drawing parallels with its non-
fractional counterpart. To build a fractional analogue of polynomial Wiener chaos on
the real line, we introduce a new function, which we call the extended Hermite func-
tion, by smoothly joining two power-normalized parabolic cylinder functions at zero.
We form an orthogonal set of extended Hermite functions as a one-parameter family
and use tensor products of the extended Hermite functions as building blocks in the
fractional Wiener chaos expansion, in the same way that tensor products of Hermite
polynomials are used as building blocks in the Wiener chaos polynomial expansion.
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1 Introduction

The area of fractional calculus hasmade its way into various pure and applied scientific
fields, as evidenced by its integration into numerous disciplines, (see [11]). Recently,
there have been several attempts to incorporate fractional calculus into stochastic
analysis (see e.g. [19, 26]). In this paper, we create a fractional generalisation of
the Wiener chaos expansion (see [10, 13, 35]) by constructing an analogue of Wiener
chaos based on the extendedHermite functions.We define these functions by smoothly
joining at 0 two specific parabolic cylinder functions with an exponential factor. In
the process, we demonstrate that this parabolic cylinder function with an exponential
factor, which we call “a power-normalised parabolic cylinder function”, acts as an
extension of theHermite polynomial, particularly onR+. It retains the samemartingale
properties and other fundamental characteristics of the Hermite polynomial. However,
power-normalised parabolic cylinder functions form an orthogonal basis only on R+.
To create an orthogonal basis on the entire R, we need to smoothly join at 0 two
specificpower-normalised cylinder functions. The resulting function,whichwecall the
extended Hermite function, is used as a building block in theWiener chaos expansion,
see [38, 40, 45]. Hence, it is accurate to state that power-normalised parabolic cylinder
functions and extended Hermite functions can be viewed as fractional versions of
Hermite polynomials.

Many researchers have been exploring fractional Brownian motion and the asso-
ciated stochastic analysis, as illustrated in books such as [30] and [4]. Here, we are
pursuing another "fractional" aspect, focusing solely on ordinary Brownian motion
while considering the order of chaos components to be fractional.

The concept of homogeneous chaos, introduced by Wiener in 1938 (see [44]),
involves studying square integrable nonlinear functionals of Brownian motion. This
concept was reinterpreted by Cameron andMartin, who developed an orthogonal basis
for these functionals using the so-called Fourier-Hermite functionals, formed from
tensor products ofHermite polynomials. Later, in 1951, Itô introduced the construction
of multiple Wiener integrals to be used in the orthogonal decomposition of the space
of square-integrable Brownian functionals. It is now well known, see e.g. [4, 13, 16,
29], that these three approaches describe the same concept.

In this paper, we propose a fractional extension of the polynomial chaos expan-
sion. First, we introduce a fractional extension of the Hermite polynomial, which we
call the power normalised cylinder function. Using these power-normalised cylinder
functions, we create an orthogonal system of functions on R

+. Finally, by using two
orthogonal sets of power normalised cylinder functions, we create the set of extended
Hermite functions, which are orthogonal onR. We use the extended Hermite functions
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Fractional Wiener chaos... 2825

in the corresponding chaos, where the tensor product of Hermite polynomials in the
ordinary Wiener chaos expansion is replaced by the tensor product of extended Her-
mite functions. This fractional analogue of Wiener chaos provides new expansions in
orthogonal functions, which may be used in solving PDEs with such stochastic inputs
when ordinary chaos expansion is not possible.

Moreover, the fractional analogue of the Hermite polynomial (power normalised
cylinder function) can be considered a fractional-order Itô integral with integrand 1.
The introduction of this fractional analogue of the Hermite polynomial is the small
first step toward developing the theory of fractional stochastic calculus. The question
of whether the extended Hermite function can be considered as a a fractional-order
Itô integral, along with the other properties of this newly defined function, will be
discussed in the continuation of this paper (FractionalWiener Chaos. Part 2), published
separately.

2 Preliminaries. Polynomial Wiener chaos expansion

The Wiener Chaos expansion is a fundamental concept in stochastic analysis, see
[22, 23]. Originating from the classical results of Wiener [44], after the work of Itô
[21], it now plays a central role in Malliavin calculus. The connection between mul-
tiple Itô integrals and Hermite polynomials has become a classical result nowadays.
In its polynomial form, the Wiener polynomial chaos is widely applied in computa-
tional engineering and physics [17, 37, 39]. The Wiener Chaos is also used in solving
stochastic partial differential equations (SPDEs), when considered in the white noise
framework, see e.g. [20, 28].

In this section, we present a brief introduction to Wiener polynomial chaos. For
more detailed introduction see for example [10, 17, 24].

The extended Hermite polynomials (sometimes called Gaussian Hermite Polyno-
mials), for x ∈ R, t > 0 and n ∈ N ∪ {0} are defined (see, for example, [31, 35])
as

Hn(x, t) = (−1)ntne
x2
2t

dn

dxn

(
e− x2

2t

)
, for n ∈ N (2.1)

with H0(x, t) = 1. Sometimes, the extended Hermite polynomials are referred to
as time-space Hermite polynomials, highlighting that x can be considered as a spa-
tial variable and t as time. This perspective is particularly useful when dealing with
Hn(Wt , t), where (Wt )t≥0 is a Wiener process.

For t = 1 we get the classical Hermite polynomials hn(x) := Hn(x, 1), i.e.

hn(x) = (−1)ne
x2
2

dn

dxn
e− x2

2 . (2.2)

It is easy to see that

Hn(x, t) = t
n
2 hn

(
x√
t

)
, n ∈ N ∪ {0}. (2.3)
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2826 E. Boguslavskaya, E. Shishkina

TheextendedHermite polynomialsHn(x, t) formanorthogonal basis in L2(R, νt (dx))

with νt (dx) = 1√
2π t

e− x2
2t dx , see for example [36].

Wiener [44] originally introduced the homogeneous chaos expansion, using the term
"polynomial chaos" to denote the set of all multiple integrals taken with respect to
the Wiener process. Cameron and Martin [7] demonstrated that any square-integrable
functional with respect to the Wiener measure on the set of continuous functions on
the interval [0, 1] vanishing at 0 can be expanded into a series of Hermite polynomials
in a countable set of Gaussian random variables, convergent in the L2 sense. Itô [21]
established the connection between these two approaches. This made the Hermite
chaos expansion a fundamental tool for representing second-order stochastic processes
through orthogonal polynomials in a countable set of Gaussian random variables.

Let g ∈ L2([0, T ]) with

‖g‖ =
⎛
⎝

T∫
0

g2(t)dt

⎞
⎠

1
2

, (2.4)

and let

ξ =
T∫

0

g(t)dWt , (2.5)

where W = {Wt }t≥0 is a Wiener process. Note, that ξ
‖g‖ follows the standard normal

distribution:

ξ

‖g‖ = 1

‖g‖
T∫

0

g(t)dWt ∼ N (0, 1). (2.6)

By formula (1.15) in [10], the iterated Itôintegral can be expressed as follows for each
natural n:

In(g) = n!
T∫

0

tn∫
0

. . .

t2∫
0

g(t1)g(t2) . . . g(tn)dWt1 . . . dWtn = ‖g‖nhn
(

ξ

‖g‖
)

= Hn

⎛
⎝

T∫
0

g(t)dWt , ‖g‖2
⎞
⎠ . (2.7)

We take the latter expression as a definition:

Definition 1 Let g ∈ L2([0, T ]). We define the n-fold Itô integral of function g as:
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In(g) := Hn

⎛
⎝

T∫
0

g(t)dWt , ‖g‖2
⎞
⎠ . (2.8)

We also use Proposition 1.8 from [10] into the following definition:

Definition 2 Let g1, g2, . . . be orthogonal functions in L2([0, T ]). We extend Defini-
tion 1 to the tensor product of functions as follows:

In(g
⊗ j1
i1

⊗ · · · ⊗ g⊗ jr
ir

) :=
r∏

k=1

H jk

⎛
⎝

T∫
0

gik (t)dWt , ‖gik‖2
⎞
⎠ , (2.9)

where { jk}rk=1is set of r pairwise distinct natural numbers such that j1 +· · ·+ jr = n,
{ik}rk=1 is also a set of r pairwise distinct natural numbers, and ⊗ denotes the tensor
product.

Now consider the renormalisation of
∫ T
0 gk(t)dWt such that the norms of functions

gk are equal to 1, ‖gk‖ = 1 for all k. Theorem 1.10 in [10] or Theorem 2.2.4 in [20]
can be reformulated in our context as follows (see also [17]):

Theorem 1 Suppose F is a square integrable random variable in L2(R, η(x)dx) with

η(x) = 1√
2π

e− x2
2 , and let {ξi }∞i=1 be a set of independent normally distributed random

variables with mean zero and variance one, ξi ∼ N (0, 1). Then there exists a unique
representation

F = E(F) +
∞∑
n=1

∑
j1+...+ jr=n

∑
i1,i2,...,ir ;

il 
=imfor l 
=m

c j1 j2... jri1i2...ir

r∏
k=1

h jk (ξik ) (2.10)

= E(F) +
∞∑
n=1

∑
j1+...+ jr=n

∑
i1,i2,...,ir ;

il 
=imfor l 
=m

c j1 j2... jri1i2...ir

r∏
k=1

H jk (ξik , 1) (2.11)

where jk and ik are natural numbers, c
j1 j2... jr
i1i2...ir

are some constants. The convergence

is in L2(R, η(x)dx) .

The represention in Theorem 1 is called the Wiener-Itô expansion of random vari-
alble F .

3 Background and the definition of the power-normalised parabolic
cylinder function

Let us consider the extended Hermite polynomials, which depend on x ∈ R and a
parameter y > 0 (this corresponds to equation (2.1), with y used instead of t to
emphasize that this parameter is not necessarily time).
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2828 E. Boguslavskaya, E. Shishkina

Hn(x, y) = (−y)ne
x2
2y

dn

dxn
e− x2

2y , n ∈ N ∪ {0}. (3.1)

Formula (3.1) is called theRodrigues formula for the (extended) Hermite polynomials.
Let x �→ wy(x) denote the Gaussian density by

wy(x) = 1√
2π y

e− x2
2y , x ∈ R, y > 0, (3.2)

and byNodd andNeven denote the sets of all odd and even natural numbers, respectfully.
It is well known, see e.g. [14], that

• {Hn(x, y)}n∈N forms an orthogonal basis on L2(R, wy x)dx),
• {Hn(x, y)}n∈Nodd forms an orthogonal basis on L2(R+, wy(x)dx),
• {Hn(x, y)}n∈Neven forms an orthogonal basis on L2(R+, wy(x)dx).

In particular,

∞∫
−∞

Hn(ξ, y)Hk(ξ, y)wy(ξ)dξ = n!y
n+k
2

nk , n, k ∈ N ∪ {0} (3.3)

and

∞∫
0

Hn(ξ, y)Hk(ξ, y)wy(ξ)dξ = n!y n+k
2 δnk, n, k ∈ Neven ∪ {0} or n, k ∈ Nodd

(3.4)

where w = wy(x) is the Gaussian density (3.2), δnk is the Kronecker delta. We aim
to generalise the extended Hermite polynomials to fractional order parameters while
maintaining orthogonality.

Consider the following representation: for a non-negative integer n, we have (see
[1], formula 19.13.1)

Hn(x, y) = y
n
2 e

x2
4y Dn

(
x√
y

)
, n ∈ N ∪ {0}, (3.5)

where Dn is the parabolic cylinder function, see [27].
Now, for α ∈ C, the parabolic cylinder function, Dα is given by (see [1], formula

19.12.1)

Dα(z)=√
π2

α
2 e− z2

4

(
1

Γ
( 1−α

2

) 1F1
(

−α

2
; 1
2
; z

2

2

)
−

√
2z

Γ
(−α

2

) 1F1
(
1 − α

2
; 3
2
; z

2

2

))
.

(3.6)
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Here

1F1(a; b; z) =
∞∑
n=0

(a)nzn

(b)nn! , (a)n = Γ (a + n)

Γ (a)
,

is a generalised hypergeometric function (a confluent hypergeometric Kummer’s func-
tion of the first kind). Substituting in (3.6) the expanded expressions of hypergeometric
series we get

Dα (z)= e− z2
4

2
α
2 +1Γ (−α)

∞∑
n=0

(−1)nΓ
( n−α

2

)
n! (

√
2z)n . (3.7)

Considering (3.5), since α ∈ C in (3.6), we can extend Hn by the parameter n to the
set of all complex numbers.

Definition 3 The function

Hα(x, y) = y
α
2 e

x2
4y Dα

(
x√
y

)
, x ∈ R, y > 0, α ∈ C, (3.8)

is called the power-normalised parabolic cylinder function. Here, Dα denotes the
parabolic cylinder function as described in (3.6).

One can also consider Hα(z, y) as a function of the complex variable z. Since
Dα(z) is an entire function of z,Hα(z, y) is also an entire function of its argument z.

4 Some properties of the power-normalised parabolic cylinder
function

4.1 Partial differential equation and boundary conditions for the power
normalised parabolic cylinder function

Proposition 1 The power-normalised parabolic cylinder functionHα(x, y), for x, α ∈
R, y > 0, has the following properties:

1. For x > 0 and as the parameter y tends to zero, Hα(x, y) approached xα:

lim
y→0

Hα(x, y) = xα. (4.1)

2. Derivatives of Hα(x, y) with respect to x and y, for x ∈ R, y > 0, are given by

∂

∂x
Hα(x, y) = αHα−1(x, y), (4.2)

∂

∂ y
Hα(x, y) = −α(α − 1)

2
Hα−2(x, y). (4.3)
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3. For x > 0 and for any α ∈ R function u(x, y) = Hα(x, y) is the solution
u = u(x, y) to the problem:

⎧⎪⎨
⎪⎩
uy + 1

2uxx = 0,
u(x, 0) = xα,

u(0, y) = √
π

2
α
2 y

α
2

Γ ( 1−α
2 )

.

(4.4)

Proof 1. According to the approximation Dα(z) ∼ zαe− z2
4 for large z and moderate

α as stated in [1], p. 689, formula 19.8.1 we get:

lim
y→0

Hα(x, y) = lim
y→0

y
α
2 e

x2
4y Dα

(
x√
y

)

= lim
y→0

y
α
2 e

x2
4y

(
x√
y

)α

e− x2
4y = xα. (4.5)

2. For the derivative of Dα(z), we have the formula

d

dz
Dα(z) = αDα−1(z) − z

2
Dα(z), (4.6)

which can be obtained from 19.6.1 in [1], p. 688. Therefore, we can calculate

∂

∂x
Hα(x, y) = y

α
2

∂

∂x

[
e
x2
4y Dα

(
x√
y

)]

= y
α
2 e

x2
4y

[
x

2y
Dα

(
x√
y

)
+ α

1√
y
Dα−1

(
x√
y

)

−
(

x

2
√
y

)
1√
y
Dα

(
x√
y

)]

= αy
α−1
2 e

x2
4y Dα−1

(
x√
y

)

= αHα−1(x, y).

For the derivative with respect to y, utilising equation (4.6) and formula 19.6.4 from
[1], p. 688, we get

∂

∂ y
Hα(x, y) = ∂

∂ y

(
y

α
2 e

x2
4y Dα

(
x√
y

))

= α

2
y

α
2 −1e

x2
4y Dα

(
x√
y

)
− x2

4
y

α
2 −2e

x2
4y Dα

(
x√
y

)

+ x2

4
y

α
2 −2e

x2
4y Dα

(
x√
y

)
− α

2
xy

α−3
2 e

x2
4y Dα−1

(
x√
y

)
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= α

2
y

α
2 −1e

x2
4y

(
Dα

(
x√
y

)
− x√

y
Dα−1

(
x√
y

))

= −α(α − 1)

2
y

α−2
2 e

x2
4y Dα−2

(
x√
y

)

= −α(α − 1)

2
Hα−2(x, y).

3. According to formulas (4.2) and (4.3) we get that Hα(x, y) satisfies equation in
(4.4). According to formula (4.1) we get a condition in (4.4). 
�

We call Hα(x, y) the power-normalised parabolic cylinder function due to the
property (4.1).

4.2 The norm of the power normalised parabolic cylinder function

Proposition 2 For all real α 
= 0, 1, 2, ... and for fixed y > 0

0 < ||Hα||2w = yα
ψ
( 1−α

2

)− ψ
(−α

2

)
2Γ (−α)

, (4.7)

where ψ is the digamma function, given by ψ(z) = Γ ′(z)
Γ (z) .

Proof We have (see [18], 7.711.3)

||Hα||2w = 1√
2π y

∞∫
0

H2
α(x, y)e− x2

2y dx

= 1√
2π y

yα

∞∫
0

[
e
x2
4y Dα

(
x√
y

)]2
e− x2

2y dx = yα

∞∫
0

D2
α

(
x√
y

)
dx

= 1√
2π y

yα

∞∫
0

D2
α

(
x√
y

)
dx

∣∣∣∣{ x√
y =ξ

} = 1√
2π

yα

∞∫
0

D2
α(ξ)dξ

= yα
ψ
( 1−α

2

)− ψ
(−α

2

)
2Γ (−α)

,

where ψ is the digamma function, given by ψ(z) = Γ ′(z)
Γ (z) .

For α < 0 we get ψ
( 1−α

2

)
> ψ

(−α
2

)
, since ψ(z) is strictly increasing for z > 0

and Γ (−α) > 0, therefore ||Hα||w > 0.
For α > 0, α 
= 0, 1, 2, ... we can use the following equality (see [2], p. 516)

ψ(b + 1) − ψ(a + 1) =
∞∑
n=1

b − a

(n + a)(n + b)
, a 
= b, a, b 
= −1,−2,−3, ...
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Fig. 1 ψ
(
1−α
2

)
− ψ

(− α
2
)
and Γ (−α)

Therefore, we obtain the following formula

ψ

(
1 − α

2

)
− ψ

(
−α

2

)
= 1

2

∞∑
n=1

1(
n − α+2

2

) (
n − α+1

2

) ,

from which we see that ψ
( 1−α

2

)−ψ
(−α

2

)
and Γ (−α) in (4.7) have the same simple

poles at α = 0, 1, 2, ... and do not have any other poles. Also, it is easy to see that
ψ
( 1−α

2

) − ψ
(−α

2

) 
= 0 and Γ (−α) 
= 0. The behaviour of ψ
( 1−α

2

) − ψ
(−α

2

)
at

α = k, k ∈ N ∪ {0} is given by (see Figure 1)

lim
α→2k−0

(
ψ

(
1 − α

2

)
− ψ

(
−α

2

))
= lim

α→2k−0
Γ (−α) = +∞,

lim
α→2k+0

(
ψ

(
1 − α

2

)
− ψ

(
−α

2

))
= lim

α→2k+0
Γ (−α) = −∞,

lim
α→2k+1−0

(
ψ

(
1 − α

2

)
− ψ

(
−α

2

))
= lim

α→2k+1−0
Γ (−α) = −∞,

lim
α→2k+1+0

(
ψ

(
1 − α

2

)
− ψ

(
−α

2

))
= lim

α→2k+1+0
Γ (−α) = +∞.

Therefore, we have

ψ
( 1−α

2

)− ψ
(−α

2

)
2
√
2Γ (−α)

> 0.


�
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4.3 Rodrigues’s formula for the power-normalised parabolic cylinder function

Here we present the fractional generalisation of Rodrigues’s formula for extended
Hermite polynomilas 3.1:

Proposition 3 For Hα(x, y) the following representation is valid

Hα(x, y) = yαe
x2
2y (Dα−)xe

− x2
2y , α > 0, x ∈ R, y > 0, (4.8)

where is Dα− is the Riemann-Liouville fractional derivative (12.1).

Proof Letm = [α]+1when α in not integer andm = α when α is integer. Calculating

(Dα−)x e
− x2

2y by (12.1) we obtain

(Dα−)xe
− x2

2y = (−1)m
dm

dxm
(Im−α− )x e

− x2
2y

= (−1)m y
m−α
2

dm

dxm
e− x2

4y Dm−α

(
x√
y

)
.

Here formula (12.4) when β = m − α was used.
By the formula (see [3], p. 119. formula (16)) for m ∈ N, α ∈ R

dm

dzm

(
e− z2

4 Da(z)

)
= (−1)me− z2

4 Da+m(z) (4.9)

we obtain

(Dα−)xe
− x2

2y = y− α
2 e− x2

4y Dα

(
x√
y

)
.

Thus, according to (3.8), we obtain (4.8). 
�
The connection between parabolic cylinder function and fractional derivative was

also noticed in [32].

4.4 On zeros of the power-normalised parabolic cylinder function

It is known that functions with infinitely many zeros are good candidates for construct-
ing an orthogonal basis. Think, for example, of cos and sin functions. Let us show that
Hα(z, y) fits this criterion. Specifically, we show that Hα(z, y) has infinitely many
zeros for each positive non-integer α. Indeed, in [12] the Hermite function

Hα(x) = − sin(πα)Γ (α + 1)

2π

∞∑
n=0

Γ
( n−α

2

)
n! (−2x)n
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for x ≥ 0 was considered. From the Euler’s reflection formula, we get

Γ (−α) = − π

sin(απ)Γ (α + 1)

and, applying (3.7) and (3.8), we obtain

Hα(x, y) =
( y
2

) α
2
Hα

(
x

4
√
2y

)
.

Therefore, from Theorem 3.1 in [12], we have the following proposition:

Proposition 4 Let x ≥ 0, y > 0. For n < α ≤ n+1, n = 0, 1, ..., Hα(x, y) has n+1
real zeros, and it has no real zeros when α ≤ 0. Each zero is an increasing function
of α on its interval of definition.

5 Orthogonality of power-normalised parabolic cylinder functions on
the half-line

Here, we present the conditions under which power-normalised parabolic cylinder

functions are orthogonal with respect to the Gaussian weight wy(x) = 1√
2π y

e− x2
2y on

R
+.

Theorem 2 Let c be some real non-zero constant. Consider the following equation:

Γ
(−α

2

)
Γ
( 1−α

2

) = c, c ∈ R \ 0. (5.1)

Equation (5.1 has infinitely many real positive non-integer roots.
Suppose αk > 0 and αm > 0 with k,m ∈ N are real but not integer roots of

(5.1).Then, the functions {Hαk (x, y)}k∈N form an orthogonal set with respect to x on

the interval (0,∞) for a fixed y, with weight function 1√
2π y

e− x2
2y :

〈Hαk ,Hαm 〉w = 1√
2π y

∞∫
0

Hαk (x, y)Hαm (x, y)e− x2
2y dx = 0, αk 
= αm, (5.2)

1√
2π y

∞∫
0

H2
αk

(x, y)e− x2
2y dx = yαk

ψ
(
1−αk
2

)
− ψ

(−αk
2

)
2Γ (−αk)

. (5.3)
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Proof Let αk and αm be any real positive but not integer numbers. For αk 
= αm we
consider the integral

∞∫
0

Hαk (x, y)Hαm (x, y)e− x2
2y dx = y

αk+αm
2

∞∫
0

Dαk

(
x√
y

)
Dαm

(
x√
y

)
dx .

Without loss of generality suppose αk > αm . By formula 7.711.2 from [18] we have

∞∫
0
Dαk

(
x√
y

)
Dαm

(
x√
y

)
dx

= π2
1
2 (αm+αk+1)

αk−αm

(
1

Γ (
1−αk
2 )Γ (− αm

2 )
− 1

Γ (
1−αm

2 )Γ (− αk
2 )

)
. (5.4)

From the right side of (5.4) we see the if αk and αm are distinct positive non-integer
roots of the equation (5.1), i.e. Γ (−αm

2 )=cΓ ( 1−αm
2 ) and Γ (−αk

2 )=cΓ (
1−αk
2 ), then

1

Γ (
1−αk
2 )Γ (−αm

2 )
− 1

Γ ( 1−αm
2 )Γ (−αk

2 )

= 1

cΓ (
1−αk
2 )Γ ( 1−αm

2 )
− 1

cΓ ( 1−αm
2 )Γ (

1−αk
2 )

= 0.

Moreover, it is easy to see that if αk and αm are distinct positive natural numbers of
the same parity, then the right-hand side in (5.4) is also equal to zero, which proves
the well-known fact that Hermite polynomials of the same parity form an orthogonal
system in L2(R+, wy(x)dx).

Now, let us show that (5.1) has infinitelymany real positive not integer roots.Denote

A(α) = Γ
(−α

2

)
Γ
( 1−α

2

) .

For 2n < α < 2n+2, n ∈ N∪{0} the function A = A(α) is continuouswith A(α) < 0
for 2n < α < 2n + 1, A(α) > 0 for 2n + 1 < α < 2n + 2, and A(2n + 1) = 0.
Moreover, we have for n ∈ N ∪ 0

lim
α→2n+0

A(α) = −∞, lim
α→2n+2−0

A(α) = +∞.

Therefore, equation A(α) = c, where c ∈ R \ 0 has infinitely many non-integer
positive real roots, see Figure 2. (Similar function was investigated in [9])).

The case αk = αm has already been calculated in Proposition 2 and is given by
(4.7). 
�
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Fig. 2 Roots of A(α) = c, with c=4.2. Here α1 ≈ 1.8641, α2 ≈ 3.89897, α3 ≈ 5.91599, α4 ≈ 7.92655,
α5 ≈ 9.93391

6 Sturm-Liouville problem for the Hermite equation and orthonormal
basis

In Theorem 2, we discovered that the functions Hαk (x, y), where k ∈ N with αk > 0

and αk /∈ 0, 1, 2, . . . and
Γ
(
− αk

2

)

Γ
(
1−αk
2

)=c, where c is some fixed real non-zero number,

form an orthogonal system with respect to x in L2(R+, w(x)dx). In this section, we
aim to address the question of the completeness of such a system. It is established (see
[43]) that identifying a complete orthogonal system of functions typically requires
examining some boundary value problem for an ordinary differential equation, specif-
ically, the Sturm-Liouville problem. The solution system of the specified boundary
value problem then serves as a suitable basis.

Let y be a fixed parameter and x ≥ 0.Nowwewould like to find the Sturm-Liouville
problem for Hα(x, y). It is easy to see that

x
d

dx
Hα(x, y) = x2

y
Hα(x, y) − x

y
Hα+1(x, y),

−y
d2

dx2
Hα(x, y) = − x2

y
Hα(x, y) + αHα(x, y) + x

y
Hα+1(x, y),

therefore Hα(x, y) satisfies to the boundary value problem

{
LHℵ(x) = αℵ(x), x > 0;
ℵ(x) ∼

x→+∞ xα, (6.1)

123



Fractional Wiener chaos... 2837

where

LH = −yD2 + xD, D = d

dx
.

Here, we have taken into account (4.5).
We also have

Hα(0, y) =
√

π2
α
2 y

α
2

Γ
( 1−α

2

) ,
d

dx
Hα(x, y)|x=0 = −

√
π2

α+1
2 y

α−1
2

Γ
(−α

2

) . (6.2)

SoHα(x, y) is a nontrivial solution to the singular Sturm–Liouville problem (6.1).
It is widely recognized that if an operator is self-adjoint within a specific domain,

then several standard methods exist, see e.g. [43], to demonstrate that the eigenfunc-
tions of this operator constitute an orthonormal basis in the corresponding Hilbert
space. Consequently, to apply Sturm-Liouville theory to the operator LH , it is nec-
essary to define a domain in which LH is self-adjoint for all functions within this
domain.

Let y > 0, ξ > 0, ξ 
= 0, 1, 2, ..., a.c.(0,∞) is the class of absolutely continuous
on (0,∞) functions,

D̃ = { f , f ′ ∈ a.c.(0,∞) : f , LH f ∈ L2(R+, w(x)dx)},

a(ξ) = Γ
(
1−ξ
2

)
, b(ξ) = −

√
y
2Γ
(
− ξ

2

)
. Then in the definition domain

Dξ (LH) = { f ∈ D̃ : a f (0) − b f ′(0) = 0
}
, a, b ∈ R,

the operator LH is self-adjoint.
Since

Γ

(
1 − ξ

2

)
Hα(0, y) +

√
y

2
Γ

(
−ξ

2

)
d

dx
Hα(0, y)|x=0

=
√

π2
α
2 y

α
2

Γ
( 1−α

2

)
Γ
(−α

2

)
[
Γ

(
1 − ξ

2

)
Γ
(
−α

2

)
− Γ

(
−ξ

2

)
Γ

(
1 − α

2

)]

= 0, (6.3)

we get that Hα(x, y) ∈ Dξ (LH) by x .
In other words,Hα(x, y) is an eigenfunction of the self-adjoint operator LH, with

the corresponding parameter value α being its eigenvalue. Given that the problem
is singular, the theory of eigenfunction expansion from the regular Sturm-Liouville
problem cannot be applied directly. We shall consider the set of functions orthogonal
with respect to x , {Hαk (x, y)}k∈N, on the interval (0,∞) as described in Theorem 2.
EachHαk (x, y) is an eigenfunction of LH, leading us to conclude that the eigenvalues
αk , with αk > 0 and αk 
= 1, 2, . . ., are real, countable, ordered, and include a smallest
eigenvalue. Hence, they can be listed as α1 < α2 < . . . < αk < . . .. However,
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there is no largest eigenvalue, and αk approaches +∞ as k approaches +∞. For
each eigenvalue αk , there exists a corresponding eigenfunction Hαk (x, y). Thus, the
operator LH exhibits a purely discrete spectrum. According to [43], if a self-adjoint
operator possesses a purely discrete spectrum, it must have a complete orthonormal
sequence of eigenfunctions.

Therefore, eigenfunctionsHαk (x, y) corresponding to different eigenvalues form a
basis in L2(R+, w(x)dx) with respect to x under the conditions of Theorem 2. Thus,
we obtain the following theorem.

Theorem 3 For each f (x) ∈ Dξ (LH), there exists a decomposition

f (x) =
∞∑
k=1

ckHαk (x, 1), ck = 〈 f (x),Hαk (x, 1)〉w
‖Hαk‖w

,

where αk > 0, k ∈ N, and αk 
= 0, 1, 2, . . . are eigenvalues of LH such that α1 <

α2 < . . . < αk < . . ..

In [9], an explicit form of a one-parameter family of orthonormal bases for the space
L2(R+, w(x)dx) was provided. Specifically, it demonstrated that the set of functions
Dα forms an orthonormal basis in L2(R+, w(x)dx) with eigenvalues (α + 1

2 ).

7 Appell integral transform and themartingale property of the power
normalised parabolic cylinder function

7.1 Appell integral transform

The main tool for studying the probabilistic properties of power-normalised parabolic
cylinder functions of Wiener Process {Hα(Wt , t)}t≥0 is the Appell integral transform,
which was first introduced in [5] for the bilateral Laplace transform. Here, we define
the Appell integral transform on the Laplace transform to apply it to our purposes.

We call AXt {g}(y) the Appell integral transform of function g with respect to
random variable Xt if

AXt {g}(y) = L 1

Ee−yXt
L−1g,

where L is the Laplace transform and Xt is a random variable with Ee−yXt < ∞ for
all y ∈ R.

Given that we are dealing with generalised functions, it is important to discuss the
appropriate class of functions forAXt . Following [42], we first introduce the action of
the Fourier transform on the generalised function, and then we will narrow the scope
of integration to the application of the Laplace transform.
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Let f be a locally integrable function in R such that f (u) = 0 for u < 0 and
| f (u)| ≤ Aeau for u → +∞, then the Laplace transform of f is (see [46])

L{ f }(s) =
∞∫
0

e−su f (u) du, s = ξ + iη ∈ C. (7.1)

Function L{ f }(s) is analytic in the half-plane ξ > a.
The Fourier transform of an absolutely integrable on R function f is

F{ f }(ξ) =
∞∫

−∞
eiξ x f (x) dx . (7.2)

Function F{ f }(ξ) is continuous and bounded in R.
SupposeD = D(R) is a space of test function, S = S(R) is a Schwartz space, and

D′ = D′(R) and S ′ = S ′(R) t are their respective dual spaces.
The following notation defines a canonical pairing:

〈 f , ϕ〉 :=
∞∫

−∞
f (x)ϕ(x) dx, ϕ ∈ S or ϕ ∈ D.

The Fourier transform of any generalised function f ∈ S ′ is given by

〈F{ f }, ϕ〉 = 〈 f ,F{ϕ}〉, ϕ ∈ S.

The set of generalised functions f ∈ D′(R), f = f (u), vanishing at u < 0 is
denoted by D′+. It is known that if f1, f2 ∈ D′+, then f1 ∗ f2 ∈ D′+ and D′+ is
a convolution algebra. The unit element in the algebra D′+ is the δ-function, since
it satisfies δ ∗ f = f . Let S ′+ = D′+ ∩ S ′, S ′+ be a convolution algebra. Denote
by D′+

a the set of generalised functions f ∈ D′+, f = f (u), that have the property
f (u)e−ξu ∈ S ′+ for all ξ > a. D′+

a is also a convolution algebra.
Let f ∈ D′+

a , f = f (u), then f (u)e−ξu ∈ S ′+ for all ξ > a. This implies that the
generalised function f (u)e−ξu has a Fourier transform for each ξ > a, therefore the
Laplace transform of the generalised function f ∈ D′+

a , f = f (u), can be defined as
(see [46])

L{ f }(s) = F{ f (u)e−ξu}(−η) ∈ S ′, s = ξ + iη ∈ C, ξ > a.

Another way to define the action of Laplace transform L to the distribution f ∈ D′+
a ,

f = f (u), for all ξ > a is given by the formula

L{ f }(s) = 〈e−au f (u), λ(u)e−(s−a)u〉, s = ξ + iη ∈ C, ξ > a, (7.3)
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where λ(u) ∈ C∞, λ(u) = 1 in a neighborhood of the support of the function f and
λ(u) = 0 for u < −1, therefore λ(u)e−(s−a)u ∈ S. Formula (7.3) can be written in
the form

L{ f }(s) = 〈 f (u), e−su〉, s = ξ + iη ∈ C, ξ > a.

Let Ha be a set of functions g = g(s) analytic in the half-plane ξ > a such that for
all ε > 0 and ξ0 > a there exist numbers Cε(ξ0) ≥ 0 and m = m(ξ0) ≥ 0 that the
inequality

|g(s)| ≤ Cε(ξ0)e
εξ (1 + |s|m), ξ > ξ0 (7.4)

is true. Ha is an algebra with usual multiplication of analytical functions.
Let

g(s) = L{ f }(s) = 〈 f (u), e−su〉, s = ξ + iη ∈ C, ξ > a.

In order to f ∈ D′+
a , it is necessary and sufficient that g ∈ Ha . Then for all b ≤ a and

ξ > ξ0 > a the inverse Laplace transform of a function g ∈ Ha is defined by

L−1{g(s)}(u) = f (u) = 1

2π i

(
d

du
− b

)m+2
ξ+i∞∫

ξ−i∞

eusg(s)

(s − b)m+2 ds, (7.5)

where m is from (7.4), gives f ∈ D′+
a . Thus, a one-to-one correspondence is estab-

lished between the algebras D′+
a and Ha .

Suppose f (u) = L−1{g}(u) is a generalised function and {Xt }t≥0 is a stochastic
process such that f (u)

Ee−uXt
∈ D′+

a . Consider the pairing

〈
f (u)

Ee−uXt
, e−uy

〉
=
〈
f (u),

e−uy

Ee−uXt

〉
∈ Ha, (7.6)

with respect to X = {Xt }t≥0. For g(s) = L{g}(s) ∈ Ha we can rewrite (7.6) in the
form of an integral transform

AXt {g}(y) =
〈
L−1g(u),

e−uy

Ee−uXt

〉
. (7.7)

We can formally express AXt as

AXt {g} = L 1

Ee−uXt
L−1g (7.8)

which we understand in the sense of (7.7).
For convenience, whether L−1g(u) is a regular functional or a singular functional,

we will use the same notation
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AXt {g}(y) =
∞∫
0

L−1{g(s)}(u)
e−uy

Ee−uXt
du (7.9)

and understand (7.9) in the sense (7.6).
We will refer to the transform given in equation (7.9) as the ’Appell Integral Trans-

form’.

Theorem 4 If

1. L−1g ∈ S ′ is a generalised function such that L−1g
Ee−uXt

∈ D′+
a ,

2. ϕ(y, u) = e−uy

Ee−uXt
ρXt (y) ∈ S(R × R+), where ρXt (y) is the density of Xt ,

3. If for each fixed y, y > 0 e−yXt

Ee−yXt
is a martingale with respect to filtration F =

(Ft )t≥0,

then AXt {g}(Xt ) is also a martingale with respect to filtration F .

Proof Firstly, we see that E|AXt {g}(Xt )| < ∞.
Secondly, in order to show that AXt {g}(Xt ) is a martingale we should show that

E[AXt {g}(Xt )|Fs] = AXs {g}(Xs).

Let ρXt |Fs (y) denote conditional density of Xt with respect to sigma algebraFs . Then
for the conditional mathematical expectation with respect Fs we can write

E[AXt {g}(Xt )|Fs] = E

⎡
⎣

∞∫
0

L−1g(u)
e−uXt

Ee−uXt
du

∣∣∣∣∣∣Fs

⎤
⎦

=
∞∫

−∞

⎛
⎝

∞∫
0

L−1g(u)
e−uy

Ee−uXt
du

⎞
⎠ ρXt |Fs (y) dy

=
∞∫

−∞

〈
L−1g(u),

e−uy

Ee−uXt
ρXt |Fs (y)

〉
dy.

Since L−1g ∈ S ′ and e−uy

Ee−uXt
ρXt (y) ∈ S(R × R+) we can write

E[AXt {g}(Xt )|Fs] =
〈
L−1g(u),

∞∫
−∞

e−uy

Ee−uXt
ρXt |Fs (y) dy

〉

=
〈
L−1g(u),E

[
e−uXt

Ee−uXt

∣∣∣∣Fs

]〉

=
〈
L−1g(u),

e−uXs

Ee−uXs

〉
= AXs {g}(Xs),
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as E
[

e−uXt

Ee−uXt

∣∣∣Fs

]
= e−uXs

Ee−uXs follows from the assumption that e−uXt

Ee−uXt
is a martingale

with respect to F . 
�

7.2 Power-normalised parabolic cylinder function as an Appell integral transform

Let W = {Wt }t≥0 be a Wiener process. For t > 0 the density function of this process
is given by w(x, t) (see (3.2)). Formally, we agree that w(x, 0) = δ(x). Therefore,
function w(x, 0) is a fundamental solution to the heat equation

∂w

∂t
= 1

2

∂2w

∂x2
.

Therefore, for t ≥ 0 we can write the Markov operator Pt as

Pt g(x) =
∞∫

−∞
g(s)w(x − s, t)ds = 1√

2π t

∞∫
−∞

g(y)e− (x−y)2

2t dy. (7.10)

Now, since

Ee−uWt =
∞∫

−∞
e−uxw(x, t)dx = 1√

2π t
L{e− x2

2t }(u)

= 1√
2π t

∞∫
−∞

e−ux− x2
2t dx = e

u2
2 t , (7.11)

then the Appell integral transform (7.9) for Wiener process is

AWt {g}(y) =
〈
L−1g(u), e−uy− u2

2 t
〉
, g ∈ S ′ (7.12)

or

AWt {g}(y) =
∞∫
0

L−1g(u)e−uy− u2
2 t du, g ∈ S ′ (7.13)

or

AWt {g}(y) = L e− u2
2 tL−1g, g ∈ S ′. (7.14)

Theorem 5 For α ∈ R function Hα(x, t) can be represented as the Appell integral
transform for Wiener process in the form

Hα(x, t) = AWt {yα}(x). (7.15)
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Proof Let first consider the case α < 0. Denote β = −α > 0. According to formula
1.4.58 on p.23 in [25], we have

L−1{y−β}(u) = uβ−1

Γ (β)
, u > 0.

Employing (7.13), we obtain

AWt {y−β}(x) =
∞∫
0

L−1{y−β}(u)e−ux− u2
2 t du

= 1

Γ (β)

∞∫
0

uβ−1e−ux− u2
2 t du

= 1

Γ (β)
e
x2
2t · e− x2

2t

∞∫
0

uβ−1e−ux− u2
2 t du

= 1

Γ (β)
e
x2
2t

∞∫
0

uβ−1e− 1
2t (ut+x)2du

∣∣{ut+x=z}

= 1

tβΓ (β)
e
x2
2t

∞∫
x

(z − x)β−1e− z2
2t dz = 1

tβ
e
x2
2t ((I β

−)ze
− z2

2t )(x).

Applying formula (12.4) and (3.8) we can write

AWt {y−β}(x) = t−
β
2 e

x2
4t D−β

(
x√
t

)
= H−β(x, t).

This results in (7.15) for α < 0.
Now, let us prove (7.15) for α ≥ 0. We should consider two scenarios: when α is

an integer and when α is not an integer.
Let α = n ∈ N∪{0}, then the inverse Laplace transform of yn is the n-th derivative

of the delta function (see [25], p. 24, formula 1.4.62)

L−1{yn}(u) = δ(n)(u).

Since by (2.3) dn
dun

(
e−ux− u2

2 t
)
u=0

= (−1)nHn(x, t), then by (7.12) we get

AWt {yn}(x) =
〈
δ(n)(u), e−uy− u2

2 t
〉

= (−1)n
(

dn

dun
e−ux− u2

2 t
)∣∣∣∣

u=0
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= Hn(x, t).

Finally, let α > 0 and not integer. For such α and for the Caputo fractional derivative
(12.2) we have (see [15])

L−1{yα}(u) = (CDα
0+δ)(x).

Here we used Caputo derivative for convenience, because next we apply the formula
for integration by parts in fractional integrals and we should obtain Riemann-Liouville
integral which is connected with Hα (see (4.8)).

Letm = [α]+1. Then by (7.12) and by formula of integrating by parts in fractional
integrals (see [34]) we obtain

AWt {yα}(x) =
〈
( CDα

0+δ)(u), e−uy− u2
2 t
〉

=
〈
δ(m)(u), ((Im−α− )ue

−ux− u2
2 t
〉
.

By (12.5) we get

((Im−α− )ue
−xu− u2

2 t )(τ ) = t−
m−α
2 e

x2
2t − (x+tτ )2

4t Dα−m

(
x + tτ√

t

)
.

According to expansion of Dβ(z) ∼ zβe− z2
4 for z large and β moderate from [1], p.

689, formula 19.8.1, function (Im−α− )ue−ux− u2
2 t can be considered as a Schwartz test

function by u and

AWt {yα}(x) =
〈
δ(m)(u), t

α−m
2 e

x2
2t − (x+tu)2

4t Dα−m

(
x + tu√

t

)〉
.

Using the representation of parabolic cylinder function U (β, z) as an integral along
the real line for γ > − 1

2 (see [1], p. 687, formula 19.5.3)

D−γ− 1
2
(z) = e

z2
4

Γ
(
γ + 1

2

)
∞∫
0

τγ− 1
2 e− (τ+z)2

2 dτ (7.16)

and (3.8), we get

(−1)mAWt {yα}(x) = t
α−m
2 e

x2
2t

dm

dum
e− (x+tu)2

4t Dα−m

(
x + tu√

t

)∣∣∣∣
u=0

= (−1)me
x2
2t t

α
2 e− (x+tu)2

4t Dα

(
x + tu√

t

)∣∣∣∣
u=0
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= (−1)me
x2
4t t

α
2 Dα

(
x√
t

)
=

= (−1)mHα(x, t).

and AWt {yα}(x) = Hα(x, t). That yields (7.15) for non-integer α > 0. 
�

Remark 1 It is worth noting that, similar to Theorem 7.15, it can be demonstrated that

Aξt {yα}(ξt ) = Hα(ξt ,Eξ2t ) = Hα(ξt , ‖g‖L2), (7.17)

where ξt = ∫ t0 g(s)dWs with g ∈ L2 and (Wt )t≥0 is a Wiener process.

8 Power-normalised parabolic cylinder functions as a stochastic
process and its properties

Let {Wt }t≥0 be a Wiener process, α > 0, then Hα(Wt , t) is a stochastic process. We
shall provide some probabilistic properties of the process Hα(Wt , t).

Lemma 1 Let {Wt }t≥0 be a Wiener process. Then the following formulas are valid

dHα(Wt , t) = αHα−1(Wt , t)dWt ,

or in other words
t∫

0

Hα−1(Ws, s))dWs = 1

α
Hα(Wt , t).

Proof We know from Definition 3.8 that Hα(x, y) has all derivatives by x and by
t > 0. For t = 0 we take a limit with t → +0 ofHα or its derivatives by t . Therefore,
we can apply Itô formula

dHα(Wt , t) =
= ∂Hα

∂x
(Wt , t)dWt + 1

2

∂2Hα

∂x2
(Wt , t)(dWt )

2 + ∂Hα

∂t
(Wt , t)dt

= ∂Hα

∂x
(Wt , t)dWt +

(
∂Hα

∂t
(Wt , t) + 1

2

∂2Hα

∂x2
(Wt , t)

)
dt

= ∂Hα

∂x
(Wt , t)dWt

= αHα−1(Wt , t))dWt

we have

dHα(Wt , t) = αHα−1(Wt , t))dWt
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and

t∫
0

Hα−1(Ws, s))dWs = 1

α
Hα(Wt , t).


�

Theorem 6 If {Wt }t≥0 is a Wiener process, then the processHα(Wt , t) is a martingale
for α > 0 with respect to the natural filtration.

Proof It is known (see formula (7.11)) that e−yWt

Ee−yWt
= e−yWt− 1

2 y
2t is a martingale and

ϕ(y, u) = e−uy

Ee−uWt
fWt (y) = 1√

2π t
e− 1

2t (y−tu)2 ∈ S(R × R+).

By Theorem 5 we have Hα(x, t) = AWt {yα}(x).
Generalised function g=L−1{yα}=(CDα

0+δ)(x)∈S ′ for α > 0 and function

e− u2
2 t (CDα

0+δ)(u)∈D′+
a . Therefore, by Theorem 4Hα(Wt , t) = AWt {yα}(Wt ) is also

a martingale. 
�

Theorem 7 Let α > 0 and s < t , then

Cov(Hα(Wt , t),Hα(Ws, s)) = sα

Corr(Hα(Wt , t),Hα(Ws, s)) =
( s
t

) α
2

.

Proof We know that for t > s

Var(Wt ) = EW 2
t = t,

corr(Wt ,Ws) =
√
s

t
= ρ, Cov(Wt ,Ws) = s.

Since Hα(Wt , t) is a martingale EHα(Wt , t) = Hα(W0, 0) = 0 for α > 0.
Now let us calculate the covariance.

Cov(Hα(Wt , t),Hα(Ws, s)) = E[Hα(Wt , t)Hα(Ws, s)]

= 1

2π
√
ts(1−ρ2)

∞∫
−∞

∞∫
−∞

Hα(x, t)Hα(y, s)e
− 1

2(1−ρ2)

(
x2
t − 2ρxy√

ts
+ y2

s

)
dxdy

= 1

2π
√
ts(1−ρ2)

∞∫
−∞

∞∫
−∞

Hα(−x, t)Hα(−y, s)e
− 1

2(1−ρ2)

(
x2
t − 2ρxy√

ts
+ y2

s

)
dxdy.
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By (7.15) and formula (5.9) from [34] we obtain

Hα(−x, t) =
∞∫
0

( CDα−δ)(u)e−ux− u2
2 t du,

Hα(−y, s) =
∞∫
0

( CDα−δ)(v)e−vy− v2
2 sdv,

where CDα− is given by (12.3), and

Cov(Hα(Wt , t),Hα(Ws, s)) =

= 1

2π
√
ts(1 − ρ2)

∞∫
0

∞∫
0

( CDα−δ)(u)( CDα−δ)(v)e− u2
2 t− v2

2 sdudv ×

×
∞∫

−∞

∞∫
−∞

e
− 1

2(1−ρ2)

(
x2
t − 2ρxy√

ts
+ y2

s

)
−ux−vy

dxdy.

For inner integral we have

I (u, v) = 1

2π
√
ts(1 − ρ2)

∞∫
−∞

∞∫
−∞

e
− 1

2(1−ρ2)

(
x2
t − 2ρxy√

ts
+ y2

s

)
−ux−vy

dxdy

= e
1
2

(
u2t+2uvρ

√
ts+v2s

)
.

I (u, v) is a moment generating function of a bivariate normal distribution.
Therefore, using formulas (5.16) and (5.20) from [34], we obtain

Cov(Hα(Wt , t),Hα(Ws, s)) =

=
∞∫
0

∞∫
0

( CDα−δ)(u)( CDα−δ)(v)euvρ
√
tsdudv

=
∞∫
0

∞∫
0

( CDα−δ)(u)( CDα−δ)(v)euvsdudv = sα.

Subsequently,

Corr(Hα(Wt , t),Hα(Ws, s)) = Cov(Hα(Wt , t),Hα(Ws, s))√
Var(Hα(Wt , t))

√
Var(Hα(Ws, s))

=
( s
t

) α
2

.


�
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It is worth noting that when α = 1, i.e. when Hα(Wt , t) coincides with Wt , we
obtain the standard results for the correlation and covariance of the standard Wiener
process, as one would naturally anticipate.

Theorem 8 Let c > 0, then Hα(Wt , t) is a self-similar process of order α/2, i.e.

(Hα(Wct , ct), t ≥ 0)
d=
(
c

α
2 Hα(Wt , t), t ≥ 0

)
.

Proof We have

Hα(Wct , ct) = AWct {yα}(Wct ) =
∞∫
0

L−1{yα}(u)e−uWct− u2
2 ct du

d�
∞∫
0

L−1{yα}(u)e−u
√
cWt− (u

√
c)2

2 t du
∣∣∣{√cu=v}

= 1√
c

∞∫
0

L−1{yα}
(

v√
c

)
e−vWt− v2

2 t dv.

Since

L−1{yα}
(

v√
c

)
= (CDα

0+δ)

(
v√
c

)
= c

α+1
2 (CDα

0+δ) (v) ,

then

(Hα(Wct , ct), t ≥ 0)
d=
(
c

α
2 Hα(Wt , t), t ≥ 0

)
.


�
Remark 2 Note that Hα(Wt , t) is an example of a non-Gaussian self-similar process,
which, informally speaking, is a fractional power of a non-fractional process. It would
be interesting to compare it to other known non-Gaussian self-similar processes, such
as those discussed in [41], where, again informally speaking, a non-fractional power
of a fractional process results in a non-Gaussian self-similar process.

9 Extended Hermite function

9.1 Definition of the extended Hermite function

In this subsection, we take two specific power-normalised parabolic cylinder functions
from two different orthogonal sets on the half-line and join them smoothly to create
a new function. Our goal is to later use this function to construct an orthogonal set
of functions over the entire real line, similar to how Hermite polynomials form an
orthogonal set.
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Definition 4 Let y > 0,and α > 0 be fixed real parameters. Let μ, 0 < μ < 1 be a
solution of the equation (with fixed α):

1√
μ

Γ
(−μα

2

)
Γ
(
1−μα

2

) = − Γ
(−α

2

)
Γ
( 1−α

2

) . (9.1)

We define the extended Hermite function of order α, denoted as H̃α(x, y), by:

H̃α(x, y) =
{
Hα(x, y), if x ≥ 0,

κHβ(−x, μy), if x < 0,
(9.2)

where β = μα, Hα(x, y) and Hβ(−x, μy) are power-normalised parabolic cylinder
functions (see definition 3.8), and the parameter κ is given by:

κ = μ− μα
2 (2y)

α(1−μ)
2

Γ
(
1−μα

2

)
Γ
( 1−α

2

) . (9.3)

Lemma 2 Letα > 0. The extendedHermite functions are continuous smooth functions
in x, H̃α ∈ C2(R).

Proof Since the power-normalised parabolic cylinder functions in (9.2) are solutions
to the boundary problem (6.1), to prove the lemma it is sufficient to verify that the
extended Hermite function is smooth at 0. Using (6.2) it is straightforward to see that

κ = Hα(0, y)

Hβ(0, μy)
= μ− β

2 (2y)
α−β
2

Γ
(
1−β
2

)
Γ
( 1−α

2

) ,

i.e.Hα(0, y) = κHβ(0, μy) . Moreover,

∂

∂x
Hα(x, y)

∣∣∣∣
x=0

= −
√

π2
α+1
2 y

α−1
2

Γ
(−α

2

) = Hα(0, y)

√
2

y

Γ
( 1−α

2

)
Γ
(−α

2

)

(9.1)= κHβ(0, μy)
1√
μ

√
2

y

Γ
(
1−μα

2

)
Γ
(−μα

2

) = ∂

∂x
κHβ(−x, μy)

∣∣∣∣
x=0

.

and by (4.2) and (6.2) we have

∂2

∂x2
Hα(x, y)

∣∣∣∣
x=0

= α(α − 1)H(α−2)(0, y) = α(α − 1)

√
π(2y)

α
2 −1

Γ
(
1 + 1−α

2

)
= −α

y
Hα(0, y) = − β

μy
κHβ(0, μy) =
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= κβ(β − 1)H(β−2)(0, μy) = ∂2

∂x2
κHβ(−x, μy)

∣∣∣∣
x=0

.


�

9.2 Orthogonal set of extended Hermite functions

Before we formulate the theorem regarding the orthogonal set of extended Hermite
functions, let us specify the two sets of power-normalized parabolic cylinder func-
tions, orthogonal on the half-line, from which we will construct the orthogonal set
of extended Hermite functions on the entire line. Specifically, we need to determine
the sets of real positive numbers {αk}k∈N and {βk}k∈N such that {Hαk (x, y1)}k∈N and
{Hβk (x, y2}k∈N, with fixed y1 > 0, y2 > 0, form two sets of orthogonal functions
on the half-line. According to Theorem 2, two real numbers c1 and c2 are sufficient,
and equation (5.1) (with c1 and c2 instead of c) will provide the desired sets of real
positive numbers.

Proposition 5 Let α > 0 be a fixed constant. Suppose c = Γ (− α
2 )

Γ
(
1−α
2

) , and let μ, where

0 < μ < 1, be the solution of the equation with fixed α:

1√
μ

Γ
(−μα

2

)
Γ
(
1−μα

2

) = − Γ
(−α

2

)
Γ
( 1−α

2

) . (9.4)

Let {αk}k∈N, where 2k − 2 < αk < 2k, be the sequence of solutions of the equation

Γ
(− x

2

)
Γ
( 1−x

2

) = c.

Suppose βk = μαk; then 2k − 2 < βk < 2k , and βk is a solution to the equation

Γ
(− x

2

)
Γ
( 1−x

2

) = −√
μc. (9.5)

Proof We have 2k−2 < αk < 2k. Therefore, (2k−2) < μ(2k−2) < μαk < μ2k <

2k as 0 < μ < 1.

Define function f = f (x, μ) with parameter μ > 0 as f (x, μ) = 1√
μ

Γ (− μx
2 )

Γ
(
1−μx

2

) .
Function f (x, μ) is continuous and increasing function of x on [ 2k−2

μ
, 2k

μ
]. Moreover,

on (2k − 2, 2k) limx→2k+1±1 f (x, 1) = ±∞. Therefore, equation (9.4) rewrtitten as

f (x, μ) = − f (x, 1)

has a unique solution on each interval [2k − 2, 2k], and equation (9.5) has a unique
solution on [2k − 2, 2k] βk = μαk . 
�
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Theorem 9 The extended Hermite functions {H̃αk (x, y)}k∈N with fixed parameter
y > 0 form an orthogonal complete set with respect to x on R, with weight function

w(x, y) = 1√
2π y

e− x2
2y :

〈H̃αk , H̃αm 〉w = 1√
2π y

∞∫
−∞

H̃αk (x, y)H̃αm (x, y)e− x2
2y dx = 0, αk 
= αm,

||H̃αk (x, y)||w = 1√
2π y

∞∫
−∞

H̃2
αk

(x, y)e− x2
2y dx = yαk

(
ψ
(
1−αk
2

)
− ψ

(−αk
2

))
2Γ (−αk)

+(μy)μαk

(
ψ
(
1−μαk

2

)
− ψ

(−μαk
2

))
2Γ (−μαk)

.

Proof Let βk = μαk . For αk 
= αm , we have

〈H̃αk , H̃αm 〉w = 1√
2π y

∞∫
−∞

H̃αk (x, y)H̃αm (x, y)e− x2
2y dx,

= 1√
2π y

0∫
−∞

κ2Hβk (−x, μy)Hβm (−x, μy)e− x2
2y dx

+ 1√
2π y

∞∫
0

Hαk (x, y)Hαm (x, y)e− x2
2y dx = 0.

||H̃αk (x, y)||w = 1√
2π y

∞∫
0

H2
αk

(x, y)e− x2
2y dx + 1√

2π y

0∫
−∞

κ2H2
βk

(−x, μy)e− x2
2y dx

= yαk
ψ
(
1−αk
2

)
− ψ

(−αk
2

)
2Γ (−αk)

+ (μy)μαk
ψ
(
1−μαk

2

)
− ψ

(−μαk
2

)
2Γ (−μαk)

.


�

It is well known that the orthogonal decomposition on the real line in terms of Her-
mite polynomials is related to quantum harmonic oscillator. Similarly, the asymmetric
harmonic oscillator considered in [8], is related to the orthogonal decomposition we
above.
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10 Fractional Wiener chaos expansion via extended Hermite
functions

The question of how to define a fractional Itô integral is not easy. One of the way to
do it, is to use a power normalised parabolic cylinder function.

Namely, following Definition (1) we extend the n-fold Itô integral of function g as
following:

Definition 5 Let α > 0. The fractional α-fold Itô integral of g ∈ L2([0, T ]) is defined
as

I αg := Hα(ξ, ||g||),

where

ξ =
T∫

0

g(t)dWt ,

and {Wt }t≥0 is a Wiener process.

Note, that when g(t) ≡ 1 we have

I α1 := Hα(Wt , t),

i.e. the power-normalised parabolic cylinder function is a fractional integral of inte-
grand 1. We will not address the question of whether the extended Hermite function
can be considered a fractional integral in this paper; instead, we will reserve the dis-
cussion for the second part of this work, to be published separately. It is worth noting
that, as folows from Theorems 4 and 5,Hα(Wt , t) is a martingale, a property that does
not seem to hold for the extended Hermite function H̃α(Wt , t). Further exploration of
this topic will be deferred for future publications.

As a further step towards fractional chaos we take the fractional analogue of the
building block of the polynomial chaos defined in Definition 2, i.e. the tensor product
of extended Hermite functions. Please note that unlike non-fractional case, this build-
ing block of the discrete chaos is not a fractional integral, but serves its role in the
orthogonal decomposition.

Suppose g1, g2, . . . are orthogonal functions in L2([0, T ]), and let {αk} be
the sequence from Theorem 9 of real positive non-integer numbers such that
{H̃αk (x, y)}k∈N forms a set of orthogonal functions. Then, the analogue of the Fourier-
Hermite function from the original paper by Cameron and Martin, [7], or the nth

fractional polynomial chaos is given by

r∏
k=1

H̃α jk

⎛
⎝

T∫
0

gik (t)dWt , ‖gik‖2
⎞
⎠ , (10.1)
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where r is a natural number such that { jk}rk=1 is a set of r pairwise distinct natural
numbers such that j1 +· · ·+ jr = n, {ik}rk=1 is also a set of r pairwise distinct natural
numbers.

Nowweare ready to formulate the fractional analogueofWiener-Itô decomposition.
Consider the renormalisation of

∫ T
0 gk(t)dWt such that the norms of functions gk

are equal to 1, ‖gk‖ = 1 for all k. Theorem 1.10 in [10] or Theorem 2.2.4 in [20] can
be reformulated in our context as follows (see also [17]):

Theorem 10 Suppose F is a square integrable random variable in L2(R, η(dx)) with

η(dx) = 1√
2π

e− x2
2 dx, and let {ξi }∞i=1 be a set of independent normally distributed

random variables with mean zero and variance one, ξi ∼ N (0, 1). Let {αk}∞k=1 be the

sequence of real positive non-integer numbers such that {H̃αk (x, y)}∞k=1 forms a set
of orthogonal extended Hermite functions. Then there exists a unique representation

F = E(F) +
∞∑
n=1

∑
j1+...+ jr=n

∑
i1,i2,...,ir ;

il 
=imfor l 
=m

c j1 j2... jri1i2...ir

r∏
k=1

H̃α jk
(ξik , 1) (10.2)

where jk and ik are natural numbers, c
j1 j2... jr
i1i2...ir

are some constants. The convergence

is in L2(R, η(dx)) .

The proof is similar to the non-fractional case, and is based on the orthogonal
decompostion of L2, see for example Theorem 2.6 and Corollary 2.8 in [24], or
section 2.4 in [17].

It should be noted, that using Theorem 2.11 from [24] one can extend the results
of Theorem 10 from L2 to L p, 0 < p < ∞.

11 Conclusion

We introduced the function Hα(x, y), which we refer to as a power-normalized
parabolic cylinder function. This function appears to serve as a fractional general-
ization of the Hermite polynomial on the half-line, as confirmed by our examination
of several deterministic and stochastic properties. In fact, in the same way that the
Hermite polynomial Hn(Wt , t) plays the role of “power function” for the Wiener pro-
cess, the power-normalized parabolic cylinder function Hα(Wt , t) plays the role of
“the fractional power function” for the Wiener process.

The power-normalized parabolic cylinder functionHα(Wt , t) is a martingale and a
self-similar non-Gaussian process. Moreover, we propose that the power-normalized
parabolic cylinder function can be interpreted as an α-fold fractional Itô integral with
an integrand of 1, drawing parallels with the non-fractional case.

As a foundational element for the fractional analogue ofWiener chaos,we introduce
the extended Hermite function H̃α(x, y) by smoothly joining two power-normalized
parabolic cylinder functions, and construct an orthogonal basis on the entire line,
{H̃αk (x, y)}k∈N. Subsequently, from the tensor product of extended Hermite functions
as a building block, we construct the fractional analogue of polynomial Wiener chaos.
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This paper is the first in a sequence of two papers on Wiener chaos expansion.
In the subsequent paper, we plan to explore the properties of the extended Hermite
function and present concrete examples demonstrating how fractional Wiener chaos
can be used to solve partial differential equations with stochastic input.

12 Appendix

Here we present fractional derivatives and integrals from [34] used in the article and
some formulas.

Riemann-Liouville fractional integrals I α
0+ and I α− for x > 0 and for α > 0 are,

respectively

(I α
0+ϕ)(x) = 1

Γ (α)

x∫
0

(x − y)α−1ϕ(y)dy

and

(I α−ϕ)(x) = 1

Γ (α)

∞∫
x

(y − x)α−1ϕ(y)dy.

Let m = [α] + 1 for non-integer α > 0. The Riemann-Liouville fractional derivative
Dα− is

(Dα−ϕ)(x) =
{

(−1)m dm
dxm (Im−α− ϕ)(x), if α /∈ N ∪ {0};

(−1)m dm
dxm ϕ(x), ifα = m ∈ N.

(12.1)

Caputo fractional derivatives CDα
0+ and CDα− for x > 0 are

(CDα
0+ϕ)(x) =

{
(Im−α

0+ ϕ(m))(x), if α /∈ N ∪ {0};
dm
dxm ϕ(x), ifα = m ∈ N,

(12.2)

(CDα−ϕ)(x) =
{

(−1)m(Im−α− ϕ(m))(x), if α /∈ N ∪ {0};
(−1)m dm

dxm ϕ(x), ifα = m ∈ N.
(12.3)

In formula (12.2) in the case of α = m ∈ N and x = 0 we consider dm
dxm ϕ(x)|x=0 as a

limit when x → +0.

Proposition 6 For β > 0 Riemann-Liouville fractional integrals I β
− of e− y2

2t and

e−xy− y2

2t by y are, respectively

((I β
−)ye

− y2

2t )(ξ) = t
β
2 e− ξ2

4t D−β

(
ξ√
t

)
, (12.4)
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((I β
−)ye

−xy− y2

2 t )(ξ) = t−
β
2 e

x2
2t − (x+tξ)2

4t D−β

(
x + tξ√

t

)
. (12.5)

Proof Let consider first

((I β
−)ye

− y2

2t )(ξ) = 1

Γ (β)

∞∫
ξ

(y − ξ)β−1e− y2

2t dy =
∣∣∣{y=√

tη}

= t
β
2

Γ (β)

∞∫
ξ√
t

(
η − ξ√

t

)β−1

e− η2

2 dη =
∣∣∣∣{η− ξ√

t
=τ
}

= t
β
2

Γ (β)

∞∫
0

τβ−1e− (τ+ξ/
√
t)2

2 dτ.

Using the representation (7.16) of parabolic cylinder function D−γ− 1
2
(z)we can write

for z = x/
√
t and γ = β − 1

2 (see [33])

∞∫
0

τβ−1e− (τ+ξ/
√
t)2

2 dτ = Γ (β)e− ξ2

4t D−β

(
ξ√
t

)
,

that gives (12.4).
Now, let us consider the second integral:

((I β
−)ye

−xy− y2

2 t )(ξ) = 1

Γ (β)

∞∫
ξ

(y − ξ)β−1e−xy− y2

2 t dy

= 1

Γ (β)
e
x2
2t · e− x2

2t

∞∫
ξ

(y − ξ)β−1e−xy− y2

2 t dy

= 1

Γ (β)
e
x2
2t

∞∫
ξ

e− 1
2t (x+yt)2(y − ξ)β−1dy

∣∣{y−ξ=z}

= 1

Γ (β)
e
x2
2t

∞∫
0

e− 1
2t (x+t(ξ+z))2 zβ−1dz

= 1

Γ (β)
e
x2
2t

∞∫
0

e
− 1

2

(
x+tξ√

t
+√

t z
)2
zβ−1dz

∣∣∣{√t z=v}
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= 1

t
β
2 Γ (β)

e
x2
2t

∞∫
0

e
− 1

2

(
x+tξ√

t
+v
)2

vβ−1dv.

Using formula (7.16) we obtain

∞∫
0

e
− 1

2

(
x+tξ√

t
+v
)2

vβ−1dv = Γ (β)e− (x+tξ)2

4t D−β

(
x + tξ√

t

)
,

that gives (12.5). 
�
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