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Abstract—This paper is devoted to the study of multi-dimensional integral transform with Fox
H-function in kernels in weighted spaces of Lebesgue measurable functions in the domain Rn

+

with positive coordinates. By using the technique of the multidimensional Mellin transformation,
mapping properties such as the boundedness, the range, the representations of the considered
transform are established. Research results generalize those obtained earlier for the corresponding
one-dimensional transformation.
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1. INTRODUCTION

We consider the multi-dimensional H-integral transform ([1], formula (1))

(Hf)(x) =

∞∫
0

Hm,n
p,q

[
xt

∣∣∣∣∣ (ai, αi)1,p

(bj , βj)1,q

]
f(t)dt, x > 0; (1)

where (see [1–3]; [4], Ch. 28; [5], Ch. 1; [6, 7]) x = (x1, x2, ..., xn) ∈ R
n; t = (t1, t2, ..., tn) ∈ R

n,
R
n is the n-dimensional Euclidean space; x · t =

∑n
n=1 xntn denotes their scalar product; in par-

ticular, x · 1 =
∑n

n=1 xn for 1 = (1, 1, ..., 1). The inequality x > t means that x1 > t1, ..., xn > tn,

and inequalities ≥, <, ≤ have similar meanings;
∫∞
0 =

∫∞
0

∫∞
0 · · ·

∫∞
0 ; by N = {1, 2, ...}, we de-

note the set of natural numbers, N0 = N
⋃
{0}, N

n
0 = N0 × ...× N0; k = (k1, k2, ..., kn) ∈ N

n
0 (ki ∈

N0, i = 1, 2, ..., n) is a multi-index with k! = k1! · · · kn! and |k| = k1 + ...+ kn; R
n
+ = {x ∈ R

n,x >

0}; for κ = (κ1, κ2, ..., κn) ∈ R
n
+ Dκ = ∂|κ|

(∂x1)κ1 ···(∂xn)κn
; dt = dt1 · · · dtn; tκ = tκ1tκ2 · · · tκn ; f(t) =

f(t1, t2, ..., tn); C
n (n ∈ N) be the n-dimensional space of n complex numbers z = (z1, z2, · · · , zn)

(zj ∈ C, j = 1, 2, · · · , n); λ = (λ1, λ2, ..., λn) ∈ C
n; h = (h1, h2, ..., hn) ∈ R

n
+; d

dx = d
dx1·dx2···dxn

; m =

(m1,m2, ...,mn) ∈ N
n
0 and m1 = m2 = ... = mn; n = (n1, n2, ..., nn) ∈ N

n
0 and n1 = n2 = ... = nn;

p = (p1, p2, ..., pn) ∈ N
n
0 and p1 = p2 = ... = pn; q = (q1, q2, ..., qn) ∈ N

n
0 and q1 = q2 = ... = qn (0 ≤

m ≤ q, 0 ≤ n ≤ p);
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ai = (ai1 , ai2 , ..., ain), 1 ≤ i ≤ p, ai1 , ai2 , ..., ain ∈ C (i1 = 1, 2, ..., p1; ...; in = 1, 2, ..., pn);
bj = (bj1 , bj2 , ..., bjn), 1 ≤ j ≤ q, bj1 , bj2 , ..., bjn ∈ C (j1 = 1, 2, ..., q1; ...; jn = 1, 2, ..., qn);

αi = (αi1 , αi2 , ..., αin), 1 ≤ i ≤ p, αi1 , αi2 , ..., αin ∈ R
+
1 (i1 = 1, 2, ..., p1; ...; in = 1, 2, ..., pn);

βj = (βj1 , βj2 , ..., βjn ), 1 ≤ j ≤ q, βj1 , βj2 , ..., βjn ∈ R
+
1 (j1 = 1, 2, ..., q1; ...; jn = 1, 2, ..., qn).

The function in the kernel of (1)

Hm,n
p,q

[
xt

∣∣∣∣∣ (ai, αi)1,p

(bj , βj)1,q

]
=

n∏
k=1

Hmk, nk
pk, qk

[
xktk

∣∣∣∣ (aik , αik)1,pk
(bjk , βjk)1,qk

]
(2)

is the product of H-functions Hm,n
p, q [z]:

Hm,n
p, q [z] ≡ Hm,n

p,q

[
z

∣∣∣∣ (ai, αi)1,p
(bj , βj)1,q

]
=

1

2πi

∫
L

Hm,n
p,q (s)z−sds, z �= 0, (3)

where

Hm,n
p, q (s) ≡ Hm,n

p, q

[
(ai, αi)1,p
(bj , βj)1,q

|s
]
=

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1− ai − αis)∏p

i=n+1 Γ(ai + αis)
∏q

j=m+1 Γ(1− bj − βjs)
. (4)

In the representation (3), L is a specially chosen infinite contour, and the empty products, if any, are
taken to be one.

The H-function (3) is the most general of the known special functions and includes, as special cases,
elementary functions, special functions of hypergeometric and Bessel type, as well as the Meyer G-
function. One may find its properties, for example, in the books ([8], Ch. 2; [9], Ch. 1; [10], Section 8.3;
[11]; [12], Ch. 1–Ch. 4; [21, 23]).

In the paper [1], we have already considered the integral transformation (1), where we characterize
the existence, the boundedness and representation properties of the H-transform on Lebesgue-type
weighted spaces Lν, 2 of functions f(x) = f(x1, x2, ..., xn) on R

n
+, such that

||f ||ν,2 =

⎧⎪⎨⎪⎩
∫
R1
+

x2νn−1
n

⎧⎪⎨⎪⎩· · ·

⎧⎪⎨⎪⎩
∫
R1
+

x2ν2−1
2

∫
R1
+

x2ν1−1
1 |f(x1, ..., xn)|2dx1]dx2

⎫⎪⎬⎪⎭ · · ·

⎫⎪⎬⎪⎭ dxn

⎫⎪⎬⎪⎭
1/2

< ∞,

ν = (ν1, ν2, ..., νn) ∈ R
n, ν1 = ν2 = ... = νn, and 2 = (2, 2, ..., 2).

The present work is devoted to extending the above results from r = 2 to any r ≥ 1. Moreover, we
will deal with the study of properties of the transform (1) on Lebesgue-type weighted spaces Lν, r of
functions f(x), such that

||f ||ν,r =

⎧⎪⎨⎪⎩
∫
R1
+

xνnrn−1
n

⎧⎪⎨⎪⎩· · ·

⎧⎪⎨⎪⎩
∫
R1
+

xν2r2−1
2

×
∫
R1
+

xν1r1−1
1 |f(x1, ..., xn)|r1dx1]r2/r1dx2

⎫⎪⎬⎪⎭
r3/r2

· · ·

⎫⎪⎪⎬⎪⎪⎭
rn/rn−1

dxn

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1/rn

< ∞,

r = (r1, r2, ..., rn) ∈ R
n, 1 ≤ r < ∞, r1 = r2 = ... = rn; ν = (ν1, ν2, ..., νn) ∈ R

n, ν1 = ν2 = ... = νn.
Research results for the transformation (1) generalize those obtained earlier for the corresponding

one-dimensional transformation (see [12], Ch. 4.1)

(Hf)(x) =

∞∫
0

Hm,n
p, q

[
xt

∣∣∣∣ (ai, αi)1,p
(bj , βj)1,q

]
f(t)dt, x > 0; (5)
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in the space Lν, r of Lebesgue measurable functions f on R
1
+ = (0,∞) for which

||f ||ν, r =

⎧⎨⎩
∞∫
0

|tνf(t)|r dt
t

⎫⎬⎭
1/r

< ∞ (1 ≤ r < ∞, ν ∈ R).

The H-transform (5) generalizing many integral transforms: transforms with the Meijer G-function,
Laplace and Hankel transforms, transforms with Gauss hypergeometric function, transforms with other
hypergeometric and Bessel functions in the kernels. One may find a survey of results and bibliography in
this field for one-dimensional case in the monograph ([12], Sections 6–8). Besides it the type of integral
transforms considered in this paper generalizes well-known transforms with Legendre function kernels
[17] and Buschman–Erdélyi operators [18–19]. The class of operators with Fox function kernels are also
important in transmutation theory [20–22], fractional integrodifferentiation operators and applications
[23–24]. Especially note the reference [20] which contains a detailed survey of V.V. Katrakhov’s main
results.

2. PRELIMINARIES

The properties of the H-function Hm,n
p, q [z] (3) depend on the numbers ([12], formulas 1.1.7–1.1.15):

a∗ =
n∑

i=1

αi −
p∑

i=n+1

αi +
m∑
j=1

βj −
q∑

j=m+1

βj ; Δ =

q∑
j=1

βj −
p∑

i=1

αi; (6)

δ =

p∏
i=1

α−αi
i

q∏
j=1

β
βj

j ; (7)

μ =

q∑
j=1

bj −
p∑

i=1

ai +
p− q

2
; (8)

a∗1 =
m∑
j=1

βj −
p∑

i=n+1

αi; a∗2 =
n∑

i=1

αi −
q∑

j=m+1

βj ; a∗1 + a∗2 = a∗, a∗1 − a∗2 = Δ; (9)

ξ =

m∑
j=1

bj −
q∑

j=m+1

bj +

n∑
i=1

ai −
p∑

i=n+1

ai; (10)

c∗ = m+ n− p+ q

2
. (11)

An empty sum in (6), (8)–(10) and an empty product in (7), if they occur, are taken to be zero and one,
respectively.

There hold the following assertions.
Lemma 1 ([12], Lemma 1.2). For σ, t ∈ R, there holds the estimate

|Hm,n
p, q (σ + it)| ∼ C|t|Δσ+Re(μ) exp−π[|t|a∗+Im(ξ)sgn(t)]/2 (|t| → ∞) (12)

uniformly in σ on any bounded interval in R, where

C = (2π)c
∗
exp−c∗−Δσ−Re(μ) δσ

p∏
i=1

α
1/2−Re(ai)
i

q∏
j=1

β
Re(bj)−1/2
j

and ξ and c∗ are defined in (10) and (11).
Lemma 2 ([12], Lemma 3.3). There holds the estimate as |t| → ∞,

H′(σ + it) = H(σ + it)

[
log δ + a∗1 log(it)− a∗2 log(−it) +

μ+Δσ

it
+O(1/t2)

]
. (13)
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Definition 1 ([12], Definition 3.2). We say that a function m belongs to the class A, if there are
extended real number ϕ(m) and ψ(m) with ϕ(m) < ψ(m) such that

(a) m(s) is analytic in the strip ϕ(m) < Re(s) < ψ(m);
(b) m(s) is bounded in every closed substrip σ1 ≤ Re(s) ≤ σ2, where ϕ(m) ≤ σ1 ≤ σ2 ≤ ψ(m);
(c) |m′(σ + it)| = O(|t|−1) as |t| → ∞ for ϕ(m) < σ < ψ(m).
For two Banach space X and Y we use the notation [X,Y ] to denote the collection of bounded linear

operators from X to Y , and [X,Y ] is abbreviated to [X].
Theorem 1 ([12], Theorem 3.1). Suppose m ∈ A. Then, there is the transform Tm ∈ Lν, r with

ϕ(m) < ν < ψ(m) and 1 < r < ∞ so that, if f ∈ Lν, r with ϕ(m) < ν < ψ(m) and 1 < r ≤ 2, there
holds the relation

(MTmf)(s) = m(s)(Mf)(s) (Re(s) = ν).

For ϕ(m) < ν < ψ(m) and 1 < r ≤ 2, the transform Tm is one-to-one on Lν, r, except when m = 0.
If 1/m ∈ A, then for max[ϕ(m), ϕ(1/m)] < ν < min[ψ(m), ψ(1/m)] and for 1 < r < ∞, Tm maps
Lν, r one-to-one onto itself, and for the inverse operator T−1

m there holds the formula T−1
m = T1/m.

Multidimensional Mellin integral transform (Mf)(x) of function f(x) = f(x1, x2, ..., xn), x =
(x1, x2, ..., xn) ∈ R

n
+, is determined by the formula

(Mf)(s) =

∞∫
0

f(t)ts−1dt, Re(s) = ν, (14)

s = (s1, s2, ..., sn) ∈ C
n. The inverse multidimensional Mellin transform has the form

(M−1g)(x) =
1

(2πi)n

γ1+i∞∫
γ1−i∞

· · ·
γn+i∞∫

γn−i∞

x−sg(s)ds, (15)

x ∈ R
n
+, γj = Re(sj) (j = 1, · · · , n). The theory of multidimensional integral transformations (14) and

(15) can be recognized, for example, in books ([5], Ch. 1; [13]; [14]). Let Wδ, R be elementary operators
(see [5], Chapter 1)

(Wδf)(x) = f

(
x

δ

)
, x ∈ R

n, δ = (δ1, δ2, ..., δn) ∈ R
n
+; (16)

(Rf)(x) =
1

x
f

(
1

x

)
. (17)

Operators (16) and (17) have the the following properties.
Lemma 3 ([3], Lemma 2; [6], Lemma 2.1). Let ν = (ν1, ν2, ..., νn) ∈ R

n (ν1 = ν2 = ... = νn) and
1 ≤ r < ∞.

(a) Wδ is a bounded isomorphism of Lν,r onto itself, and if f ∈ Lν,r (1 ≤ r ≤ 2), then

(MWδf)(s) = δs(Mf)(s) (Re(s) = ν). (18)

(b) R is an isometric isomorphism of Lν,r onto L1− ν,r, and if f ∈ Lν,r (1 ≤ r ≤ 2), then

(MRf)(s) = (Mf)(1− s) (Re s = ν). (19)

To formulate the results for the H-transform (1) we need the following constants, analogical for
one-dimensional case defined via the parameters of the H-function (3) ([12], (3.4.1), (3.4.2), (1.1.7)–
(1.1.13)):

let α̃ = (α̃1, α̃2, ..., α̃n) and β̃ = (β̃1, β̃2, ..., β̃n), where

α̃1 =

⎧⎨⎩− min
1≤j1≤m1

[
Re(bj1 )
βj1

]
, m1 > 0,

−∞, m1 = 0,
β̃1 =

⎧⎨⎩ min
1≤i1≤n1

[
1−Re(ai1 )

αi1

]
, n1 > 0,

∞, n1 = 0,
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α̃2 =

⎧⎨⎩− min
1≤j2≤m2

[
Re(bj2 )
βj2

]
, m2 > 0,

−∞, m2 = 0,
β̃2 =

⎧⎨⎩ min
1≤i2≤n2

[
1−Re(ai2 )

αi2

]
, n2 > 0,

∞, n2 = 0,

and so on

α̃n =

⎧⎨⎩− min
1≤jn≤mn

[
Re(bjn )
βjn

]
, mn > 0,

−∞, m2 = 0,
β̃n =

⎧⎨⎩ min
1≤in≤nn

[
1−Re(ain )

αin

]
, nn > 0,

∞, nn = 0;
(20)

let a∗ = (a∗1, a
∗
2, ..., a

∗
n), Δ = (Δ1,Δ2, ...,Δn), and

a∗1 =
n1∑
i=1

αi1 −
p1∑

i=n1+1

αi1 +

m1∑
j=1

βj1 −
q1∑

j=m1+1

βj1 , Δ1 =

q1∑
j=1

βj1 −
p1∑
i=1

αi1 ,

a∗2 =
n2∑
i=1

αi2 −
p2∑

i=n2+1

αi2 +

m2∑
j=1

βj2 −
q2∑

j=m1+1

βj2 , Δ2 =

q2∑
j=1

βj2 −
p2∑
i=1

αi2 ,

and so on

a∗n =

nn∑
i=1

αin −
pn∑

i=nn+1

αin +

mn∑
j=1

βjn −
qn∑

j=mn+1

βjn ; Δn =

qn∑
j=1

βjn −
pn∑
i=1

αin ; (21)

also let δ = (δ1, δ2, ..., δn) and

δ1 =

p1∏
i=1

α
−αi1
i1

q1∏
j=1

β
βj1
j1

, δ2 =

p2∏
i=1

α
−αi2
i2

q2∏
j=1

β
βj2
j2

, ..., δn =

pn∏
i=1

α
−αin
in

qn∏
j=1

β
βjn
jn

; (22)

let μ = (μ1, μ2, ..., μn) and

μ1 =

q1∑
j=1

bj1 −
p1∑
i=1

ai1 +
p1 − q1

2
, μ2 =

q2∑
j=1

bj2 −
p2∑
i=1

ai2 +
p2 − q2

2
, ...,

μn =

qn∑
j=1

bjn −
pn∑
i=1

ain +
pn − qn

2
; (23)

let ã∗ = (ã∗1, ã
∗
2, ..., ã

∗
n), â

∗ = (â∗1, â
∗
2, ..., â

∗
n)

ã∗1 =
m1∑
j=1

βj1 −
p1∑

i=n1+1

αi1 , â∗2 =
n1∑
i=1

αi1 −
q1∑

i=m1+1

βj1 ,

ã∗2 =
m2∑
j=1

βj2 −
p2∑

i=n2+1

αi2 , â∗2 =
n2∑
i=1

αi2 −
q2∑

i=m2+1

βj2 ,

and so on

ã∗n =

mn∑
j=1

βjn −
p2∑

i=nn+1

αin , â∗n =

nn∑
i=1

αin −
qn∑

i=mn+1

βjn ; (24)

and
ã∗k + â∗k = a∗k, ã∗k − â∗k = Δk (k = 1, 2, ..., n). (25)

The exceptional set EH of a function Hm,n
p,q (s):

Hm,n
p,q (s) ≡ Hm,n

p,q

[
(ai, αi)1,p

(bj , βj)1,q

∣∣∣∣∣ s
]
=

n∏
k=1

Hmk,nk
pk, qk

[
(aik , αik)1,pk
(bjk , βjk)1,qk

∣∣∣∣ sk] , (26)
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is called a set of vectors ν = (ν1, ν2, ..., νn) ∈ R
n (ν1 = ν2 = ... = νn), such that α̃k < 1− νk < β̃k

(k = 1, 2, ...n), where the parameters α̃k, β̃k(k = 1, 2, ..., n) are defined by formulas (20), and functions
Hmk,nk

pk, qk (sk) (k = 1, 2, ..., n) of the view (4) have zeros on lines Re(sk) < 1− νk (k = 1, 2, ..., n), respec-
tively (see [2], (61)).

Applying multidimensional Mellin transform (14) to (1), formally we obtain

(MHf)(s) = Hm,n
p,q

[
(ai, αi)1,p
(bj , βj)1,q

|s
]
(Mf)(1 − s). (27)

Theorem 2 ([1], Theorem 3). Suppose that

α̃k < 1− νk < β̃k; νk = νl, k �= l (k, l = 1, 2, ..., n); (28)

and that either of the conditions

a∗k > 0 (k = 1, 2, ..., n); (29)

or
a∗k = 0, Δk[1− νk] + Re(μk) ≤ 0 (k = 1, 2, ..., n) (30)

holds. Then, we have the following results:
(a) There exists a one-to-one transform H ∈ [Lν,2, L1−ν,2] so that the relation (27) holds

for Re(s) = 1− ν and f ∈ Lν,2. If a∗k = 0, Δk[1− νk] + Re(μk) = 0 (k = 1, 2, ..., n), and ν does not
belong to an exceptional set EH, then the operator H maps Lν,2 onto L1−ν,2.

(b) If f ∈ Lν,2 and g ∈ Lν,2, then for H there holds the relation
∞∫
0

f(x)
(
Hg
)
(x)dx =

∞∫
0

(
Hf
)
(x)g(x)dx. (31)

(c) Let f ∈ Lν,2, λ = (λ1, λ2, ..., λn) ∈ C
n , h = (h1, h2, ..., hn) ∈ R

n
+. If Re(λ) > (1− ν)h− 1,

then Hf is given by formula (
Hf
)
(x) = hx1−(λ+1)/h

× d

dx
x(λ+1)/h

∞∫
0

Hm,n+1
p+1,q+1

[
xt

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj , βj)1,q, (−λ− 1, h)

]
f(t)dt. (32)

When Re(λ) < (1− ν)h− 1, Hf is given by
(
Hf
)
(x) = −hx1−(λ+1)/h

× d

dx
x(λ+1)/h

∞∫
0

Hm+1,n
p+1,q+1

[
xt

∣∣∣∣∣ (ai, αi)1,p, (−λ, h)

(−λ− 1, h), (bj , βj)1,q

]
f(t)dt. (33)

(d) The transform H is independent of ν in the sense that, for ν and ν̃ satisfying the
assumptions (28), and either (29) or (30), and for the respective transforms H on Lν,2 and H̃

on L
˜ν,2 given in (27), then Hf = H̃f for f ∈ Lν,2

⋂
L

˜ν,2.

3. Lν, r-THEORY OF THE H-TRANSFORM WHEN a∗ = Δ = 0 AND Re(μ) = 0

In this section, based on the existence of the H-transform on the space Lν, 2 which is garanteed in
Theorem 2 for some ν = (ν1, ν2, ..., νn) ∈ R

n (ν1 = ν2 = ... = νn), and a∗k = Δk = 0, Re(μk) ≤ 0 (k =
1, 2, ...n), we prove that such a transform can be extended to Lν, r for r = (r1, r2, ..., rn) ∈ R

n, 1 <
r < ∞, r1 = r2 = ... = rn; ν = (ν1, ν2, ..., νn) ∈ R

n, ν1 = ν2 = ... = νn, such that H ∈ [Lν, r,L1−ν, s]
for a certain range of the value s = (s1, s2, ..., sn). The results will be different in cases Re(μk) = 0 and
Re(μk) �= 0 (k = 1, 2, ...n). We consider the former case.
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Theorem 3. Let a∗k = 0, Δk = 0 (k = 1, 2, ...n); Re(μk) = 0 (k = 1, 2, ...n), and

α̃k < 1− νk < β̃k; νk = νl, k �= l (k, l = 1, 2, ..., n).

Let 1 < rk < ∞, rk = rl, k �= l (k, l = 1, 2, ..., n).

(a) The transform H defined on Lν,2 can be extended to Lν,r as an element of [Lν,r,L1−ν,r].

(b) If 1 < rk ≤ 2, rk = rl, k �= l (k, l = 1, 2, ..., n), then the transform H is one-to-one on Lν,r

and there holds the equality (27), namely,(
MHf

)
(s) = H(s)

(
Mf

)
(1− s) (Re(s) = 1− ν). (34)

(c) If ν �∈ EH, then H is a one-to-one transform on Lν,r onto L1−ν,r, i.e.,

H(Lν,r) = L1−ν,r. (35)

(d) If f ∈ Lν, r and g ∈ Lν, r′ and r′ = r/(r − 1), then the relation (31) holds:
∞∫
0

f(x)
(
Hg
)
(x)dx =

∞∫
0

(
Hf
)
(x)g(x)dx. (36)

(e) If f ∈ Lν, r, λ ∈ C
n and h > 0, then Hf is given by(

Hf
)
(x) = hx1−(λ+1)/h

× d

dx
x(λ+1)/h

∞∫
0

Hm,n+1
p+1,q+1

[
xt

∣∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj , βj)1,q, (−λ− 1, h)

]
f(t)dt (37)

for Re(λ) > (1− ν)h− 1, while (
Hf
)
(x) = −hx1−(λ+1)/h

× d

dx
x(λ+1)/h

∞∫
0

Hm+1,n
p+1,q+1

[
xt

∣∣∣∣∣ (ai, αi)1,p, (−λ, h)

(−λ− 1, h), (bj , βj)1,q

]
f(t)dt (38)

for Re(λ) < (1− ν)h− 1.

Proof. Since α̃k < 1− νk < β̃k, νk = νl, k �= l (k, l = 1, 2, ..., n), and Δk[1− νk] + Re(μk) ≤ 0

(k = 1, 2, ..., n), then, according to Theorem 2, the transform H is defined on Lν,2. We denote by H0(s)

the function

H0(s) = δ−sH(s) =

n∏
k=1

H0(sk) =

n∏
k=1

δ−sk
k H(sk), (39)

where δk (k = 1, 2, ..., n) are defined in (22) and functions H(sk) (k = 1, 2, ..., n) are of the view (4). It
follows from (12) that

H0(σk + itk) ∼
qk∏
j=1

β
Re(bjk )−1/2

jk

pk∏
i=1

α
1/2−Re(aik )
ik

(2π)c
∗
e−c∗e−πIm(ξk)sgn(tk)/2 (|tk| → ∞) (40)

are uniformly in σk (k = 1, 2, ..., n) in any bounded interval of R. Therefore, H0(sk) (k = 1, 2, ..., n)

are analytic in the strips α̃k < Re(sk) < β̃k, and if α̃k < σ1
k ≤ σ2

k < β̃k, then H0(sk) are bounded in the
strips σ1

k ≤ Re(sk) ≤ σ2
k (k = 1, 2, ..., n). Since parameters (21) a∗k = Δk = 0 (k = 1, 2, ...n), then in

accordance with (24), (25) ã∗k = −â∗k = Δk/2 = 0 (k = 1, 2, ..., n). Then, from (39) and (13), we have

H′
0(σk + itk) = H0(σk + itk)

[
− log δk +

H′
0(σk + itk)

H0(σk + itk)

]
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= H0(σk + itk)

[
Im(μk)

tk
+O

(
1

t2k

)]
= O

(
1

tk

)
(|tk| → ∞) (41)

for α̃k < σk < β̃k (k = 1, 2, ..., n). Thus, H0(sk) (k = 1, 2, ...n) belong to the class A (see Definition 1)
with α̃k(H0) = α̃k and β̃k(H0) = β̃k (k = 1, 2, ...n).

Therefore, by virtue of the Theorem 1, there is a transform TH0(sk) ∈ [L1−νk,rk ] for 1 < rk < ∞ and

α̃k < 1− νk < β̃k (k = 1, 2, ...n). Let T = TH0(s)
=
∏n

k=1 TH0(sk). When 1 < r ≤ 2, then T is one-to-
one transform on L1−ν,r and the relation(

MTf
)
(s) = H0(s)

(
Mf

)
(s) (Re(s) = 1− ν) (42)

holds for f ∈ L1−ν,r. Let

H0 = WδTR, (43)

where Wδ and R are given in (16) and (17). According to Lemmas 3(b) and 3(a), R ∈ [Lν,r,L1−ν,r],
Wδ ∈ [L1−ν,r] and, hence, H0 ∈ [Lν,r,L1−ν,r] for α̃ < 1− ν < β̃ and 1 < r < ∞, too. When α̃ <

1− ν < β̃, 1 < r ≤ 2 and f ∈ Lν,r, it follows from (43), (18), (42), (19), and (39) that(
MH0f

)
(s) =

(
MWδTRf

)
(s) = δs

(
MTRf

)
(s) = δsH0(s)

(
MRf

)
(s)

= δsH0(s)
(
Mf

)
(1− s) = H(s)

(
Mf

)
(1− s) (44)

for Re(s) = 1− ν. In particular, for f ∈ Lν,2 Theorem 2 (a), (27) and (44) imply the equality(
MH0f

)
(s) =

(
MHf

)
(s) (Re(s) = 1− ν). (45)

Thus, H0f = Hf for f ∈ Lν,2 and, therefore, if α̃ < 1− ν < β̃,H = H0 on Lν,2 by Theorem 2(d).
Since Lν,2 ∩ Lν,r is dense in Lν,r (see [16], Lemma 2.2), H can be extended to Lν,r and, if we denote it
there by H again, H ∈ [Lν,r,L1−ν,r]. This completes the proof of assertion (a) of the theorem.

The property (b) is clear from the fact that the operator T above and the operators Wδ and R are
one-to-one and (34) follows from (44).

Let us prove (c). Since R(Lν,r) = L1−ν,r and Wδ(L1−ν,r) = L1−ν,r, then the onto map property
H(Lν,r) = L1−ν,r holds if and only if T(L1−ν,r) = L1−ν,r. To prove this, it should be noted that the
abscissas of the zeros of H(sk) divide the interval (α̃k, β̃k) (k = 1, 2, ..., n) into disjoint open intervals,
where and thereafter H0(sk) in (39) is renamed H(sk) (k = 1, 2, ..., n). Let (α̃1

k, β̃
1
k) be one such interval

(k = 1, 2, ..., n). Then, each function 1
H(sk)

is analytic in α̃1
k < Re(sk) < β̃1

k (k = 1, 2, ..., n). In view
of (40) we have

1

H0(σk + itk)
∼

qk∏
j=1

β
1/2−Re(bjk )
jk

pk∏
i=1

α
Re(aik )−1/2

ik
(2π)−c∗ec

∗
eπIm(ξk)sgn(tk)/2 (|tk| → ∞).

So, if we take α̃1
k < σ1

k ≤ σ2
k < β̃1

k , then 1
H(sk)

is bounded in the strip σ1
k ≤ Re(sk) ≤ σ2

k (k =

1, 2, ..., n). The qualities {
1

Hk

}′
(σk + itk) = −H′

k(σk + itk)

H2
k(σk + itk)

(k = 1, 2, ..., n) imply by (40) and (41) that{
1

Hk

}′
(σk + itk) = O

(
1

tk

)
(|tk| → ∞)

for α̃1
k < σk < β̃1

k . Thus, 1
H(sk)

(k = 1, 2, ...n) belong to the class A with α̃k(1/H(sk)) = α̃1
k and

β̃k(1/H(sk)) = β̃1
k (k = 1, 2, ...n). Then, for α̃1

k < νk < β̃1
k and 1 < rk < ∞ it follows from Theorem
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1 that the transforms T1/H(sk) are one-to-one on Lνk,rk and T (Lνk,rk) = Lνk,rk (k = 1, 2, ...n). Let
T = T1/H(s) =

∏n
k=1 T1/H(sk). Then, we have that T(Lν,r) = Lν,r. But if νk �∈ EH, then the value 1− νk

does not coincide with the abscissa of any zero of H(sk), and, hence, 1− νk lies in such (α̃1
k, β̃

1
k)

(k = 1, 2, ...n). Therefore, H is one-to-one transform on Lν,r and H(Lν,r) = L1−ν,r. The assertion
(c) of the theorem is thus proved.

Now we prove (36). If α̃ < 1− ν < β̃, then by using the Holder inequality ([12], 1.3.4.(1))∣∣∣∣∣∣
b∫

a

f(x)g(x)dx

∣∣∣∣∣∣ ≤
⎛⎝ b∫

a

|f(x)|pdx

⎞⎠1/p⎛⎝ b∫
a

|g(x)|p′
dx

⎞⎠1/p′

×
(
1

p
+

1

p′ = 1,−∞ ≤ a < b ≤ ∞
)
, (46)

we have ∣∣∣∣∣∣
∞∫
0

f(x)
(
Hg
)
(x)dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
∞∫
0

[xν−1/rf(x)][x1/r−ν
(
Hg
)
(x)]dx

∣∣∣∣∣∣
≤ ||f ||ν,r||Hg||1−ν,r′ ≤ K||f ||ν,r||g||ν,r′

(
1

r
+

1

r′
= 1

)
,

where K is a bound for H ∈ [Lν,r′ ,L1−ν,r′ ]. Hence, the left-hand side of (36) represents a bounded
functional on Lν,r × Lν,r′ . Similarly it is proved that the right-hand side of (36) represents such a
functional on Lν,r × Lν,r′ . By virtue of Theorem 2 (b), if f ∈ Lν,2 and g ∈ Lν,2, (31) is also true. By
([16], Lemma 2.2), Lν,r ∩ Lν,2 is dense in Lν,r and hence (31) is true for f ∈ Lν,r and g ∈ Lν,r′ with

1 < r < ∞ and α̃ < 1− ν < β̃. This completes the proof of the assertion (d) of the theorem.

Finally we prove (e). If Re(λ) > (1− ν)h− 1, then the function

gx(t) =

{
t(λ+1)/h−1, 0 < t < x;

0, t > x;
=

{
t
(λ1+1)/h1−1
1 · · · t(λn+1)/hn−1

n , 0 < tk < xk;

0, tk > xk (k = 1, 2, ...n);
(47)

belongs to Lν,s for 1 ≤ s < ∞. When s = 2, we may apply Theorem 2 (c) for gx ∈ Lν,2 and we have

(
Hgx

)
(y) = hy1−(λ+1)/h d

dy
y(λ+1)/h

x∫
0

Hm,n+1
p+1,q+1

[
yt

∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj, βj)1,q, (−λ− 1, h)

]
t(λ+1)/h−1dt

= hy1−(λ+1)/h d

dy

xy∫
0

Hm,n+1
p+1,q+1

[
t

∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj , βj)1,q, (−λ− 1, h)

]
t(λ+1)/h−1dt

= hx(λ+1)/hHm,n+1
p+1,q+1

[
xy

∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj , βj)1,q, (−λ− 1, h)

]

almost everywhere. For f ∈ Lν,r with α̃ < 1− ν < β̃ and 1 < r < ∞ and for the above gx ∈ Lν,r′ , we
have from the previous result (d) that

x∫
0

t(λ+1)/h−1
(
Hf
)
(t)dt =

∞∫
0

(
Hf
)
(t)gx(t)dt =

∞∫
0

f(t)
(
Hgx

)
(t)dt

= hx(λ+1)/h

∞∫
0

Hm,n+1
p+1,q+1

[
xt

∣∣∣∣ (−λ, h), (ai, αi)1,p

(bj , βj)1,q, (−λ− 1, h)

]
f(t)dt.
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From here, after differentiation with respect to x, we arrive at (37). In the case Re(λ) < (1− ν)h− 1,
the relation (38) is proved similarly if we use the function

hx(t) =

{
0, 0 < t < x;

t(λ+1)/h−1, t > x;

instead of the function gx(t). Thus, the theorem is proved.

4. CONCLUSIONS

The multi-dimensional integral transform with Fox H-function is studied. Conditions are obtained
for the boundedness and one-to-one correspondence property of the operator of such transform from
one Lebesgue-type weighted spaces of functions to others, and analogue of the formula for integration by
parts are proved. For the transform under consideration, various integral representations are established.
The results generalize those obtained earlier for the corresponding one-dimensional integral transform
and also for some special forms of the considered transforms.
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