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Abstract—This article investigates the Cauchy problem for a third-order pseudo-parabolic equation
with a Bessel operator. Using the Erdélyi–Kober operator transformation, the Riemann’s function
for this equation is constructed, which is expressed through the hypergeometric Kampé de Fériet
function. In particular, we obtain the Riemann’s function for a one-dimensional pseudo-parabolic
equation.
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1. INTRODUCTION

Boundary value problems for partial differential equations with singular coefficients have been studied
extensively by many mathematicians. The investigation of more complex equations with singular
coefficients represents a natural progression towards theoretical generalizations. The value of the
theoretical results obtained in such studies increases significantly due to the presence of these equations
or their special cases in applications.

A particular class of equations with partial derivatives with coefficients exhibiting singular behavior
includes equations with Bessel operators of the form

Bx
η = x−2η−1 d

dx

(
x2η+1 d

dx

)
=

d2

dx2
+

2η + 1

x

d

dx
.

For elliptic, hyperbolic, and parabolic type equations with Bessel operators in one or more variables,
I.A. Kipriyanov [1], introduced the corresponding terminology of B-elliptic, B-hyperbolic, and B-
parabolic equations. The importance of equations from these classes is also determined by their
applications in problems related to axisymmetric potential theory [2, 3], Euler–Poisson–Darboux
(EPD) equations [4, 5], Radon transform and tomography [6–8], gas dynamics and acoustics [9], jet
theory in hydrodynamics [10], linearized Maxwell–Einstein equations [11, 12], mechanics, theory of
elasticity and plasticity [13], and many others.

The most thorough exploration of problems related to equations involving Bessel operators has been
conducted by the Voronezh mathematician I.A. Kipriyanov and his students. More detailed information
on this subject can be found in the monographs by Katrakhov and Sitnik [14], Sitnik and Shishkina [15].

The foundation of the modern theory of hyperbolic partial differential equations was significantly
influenced by B. Riemann’s, who obtained an integral representation of the Cauchy problem analogous
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to the representations of boundary value problem solutions for second-order elliptic equations using
Green’s functions. This representation assumes the existence of an auxiliary function, known as the
Riemann’s function, which possesses several well-known properties [16, 17].

Subsequently, Riemann’s method for hyperbolic equations with two independent variables was
developed in the works of Colton [18], Soldatov, Shkhanukov [19], Jokhadze [20], and others. In these
studies, the Riemann’s function was introduced as a solution to a specific Goursat problem. Zhegalov,
Mironov, and Utkina [21, 22], proposed a method for finding the Riemann’s function as a solution to an
integral equation. Fro more information on this direction we note the works [23–25] and the references
therein.

A.A. Andreev and Yu.O. Yakovleva examined and solved Cauchy and Goursat problems for third and
fourth-order hyperbolic equations using Riemann’s method [26].

It is known that degenerate and singular second-order equations have the peculiarity that classical
problem formulations are not always well-posed. The lower-order coefficients significantly influence
problem formulation. Such questions for high-order equations with singular coefficients have been
scarcely investigated.

In the work of Barenblatt, Zheltov, Kochina [27], a linear pseudoparabolic equation of the form
∂

∂t
(Δxu(x, t) + λu(x, t)) + Δxu(x, t) = 0 (1)

was obtained for the first time describing a nonstationary filtration process in a fractured porous medium,
where Δx is the multidimensional Laplace operator and λ = const ∈ R.

A large number of papers are devoted to the study of equations of pseudoparabolic type, a survey of
which can be found in the monographs [28–31] and in works [22, 32].

This work is devoted to the study of questions of solvability in the classical sense of an analogue of
the Goursat boundary value problem for equation

Lα (u) ≡
∂

∂t

(
∂2u

∂x2
+

2α

x

∂u

∂x
+ λu

)
+

∂2u

∂x2
+

2α

x

∂u

∂x
= f (x, t) , (2)

when α, λ ∈ R, and 0 < 2α < 1, λ > 0.
Parameter α, participating in the equation (2), determines the order of the singularity of the equation

and the problems associated with it. In case α = 0, the equation (2) transforms into the one-dimensional
equation of Barenblatt, Zheltov, and Kochina (1), and in case α = (n− 1)/2 , we obtain the spherically
symmetric case of the equation (1) and in the last case, the variable x plays the role of the variable
r =

√
x21 + x22 + ...+ x2n in the spherical coordinate system.

The distinction of our problem from those discussed above lies in augmenting a third-order pseudo-
parabolic equation with a Bessel operator, and formulating the corresponding Cauchy problem in the
domain Ω = {(x, t); 0 < x < t}. The exact solution to the problem was found using Riemann’s method.
To determine the Riemann’s function for this equation, the solution to the Goursat problem satisfying
homogeneous boundary conditions was employed, using the Erdélyi–Kober operator.

2. FORMULATION OF PROBLEM
In contrast to the cited sources, in this work in the domain Ω = {(x, t) : 0 < x < t} , we study the

Cauchy problem for the equation with initial data on a non-characteristic line.
Cauchy problem. It is required to find a solution to equation (2) in the domain Ω satisfying the

conditions

u (x, t)|t=x = ψ1 (x) ,
∂u (x, t)

∂n

∣∣∣∣
t=x

= ψ2 (x) ,
∂2u (x, t)

∂n2

∣∣∣∣
t=x

= ψ3 (x) , x > 0, (3)

where ψk(x) for (k = 1, 2, 3) are given smooth functions, n is the unit normal vector, α, λ ∈ R, such that
0 < α < 1/2.

To construct the solution to the problem (2)–(3) we apply the Riemann’s method. Consider the
formulated problem on the plane ξOη. By applying Green’s identities

ξ2α [vLα (u)− uMα (v)] =
∂P

∂ξ
− ∂Q

∂η
,
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where

P = ξ2α (v (uξη + uξ) + u (vξη − vξ)) , Q = ξ2α (uξvξ − λvu) ,

in the domain Ω1 = {(ξ, η) : x < ξ < t, x < η < t}, we arrive at the following relation:∫∫
Ω1

ξ2α [vL (u)− uM (v)] dξ dη =

∫
Γ

Qdξ + P dη,

where Γ = Ω̄1\Ω1,

Mα (v) ≡ − ∂

∂η

(
∂2v

∂ξ2
+

2α

ξ

∂v

∂ξ
+ λv

)
+

∂2v

∂ξ2
+

2α

ξ

∂v

∂ξ
= 0 (4)

is the adjoint operator to Lα(u) is defined as follows.
The Riemann’s function of the operator Lα is a function v (x, t; ξ, η) that satisfies the following

conditions:
1) the function v (x, t; ξ, η) ∈ W , where W =

{
v : v ∈ C2

(
Ω1

)
, vξη, vξξη, vξ ∈ C (Ω1)

}
;

2) for each (x, t) ∈ Ω1, the function v (x, t; ξ, η) satisfies the equation Mα (v (x, t; ξ, η)) = 0,

3) it satisfies the following conditions on the characteristics ξ = x and η = t:

v (x, t;x, η) = 0, vξ (x, t;x, η) = ω1 (η;x, t) , x ≤ η ≤ t, (5)

v (x, t; ξ, t) = ω2 (ξ;x, t) , x ≤ ξ ≤ t, (6)

where ω1 (η, x, t) and ω2 (ξ, x, t) are solutions to the following Cauchy problems, respectively,

ω1η (η;x, t) − ω1 (η;x, t) = 0, (7)

ω1 (η;x, t)|η=t = 1, x ≤ η ≤ t, (8)

ω2ξξ (ξ;x, t)−
2α

ξ
ω2ξ (ξ;x, t) + λω2 (ξ;x, t) = 0, (9)

ω2 (ξ;x, t)|ξ=x = 0, ω2ξ (ξ;x, t)|ξ=x = 1, x ≤ ξ ≤ t. (10)

The problems (7)–(10) are uniquely solvable. It is easy to demonstrate that the solutions to problem
(9) and (10) has the form

ω1 (η, x, t) = eη−t. (11)

Now, let’s solve the problem (9) and (10). After the substitution

ω2 (ξ, x, t) =

(
s√
λ

)1/2−α

z (s, x, t) , s =
√
λξ, (12)

equation (9) transforms into the equation

s2z′′ + sz′ +
(
s2 − (α− 1/2)2

)
z = 0.

The given equation is a Bessel-type equation, and its general solution has the form [33]

z (s, x, t) = c1 (x, t)J1/2 −α (s) + c2 (x, t) Jα−1/2 (s) ,

where Jν (z) =
+∞∑
n=0

(−1)n(z/2 )2n+ν

n!Γ(ν+n+1) is the Bessel function [34], and c1 (x, t) and c2 (x, t) are arbitrary

functions depending on (x, t). Considering (12), we have

ω2 (ξ, x, t) = c1 (x, t) ξ
1/2 −αJ1/2 −α

(√
λξ

)
+ c2 (x, t) ξ

1/2 −αJα−1/2

(√
λξ

)
. (13)
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Substituting (13) into conditions (10), we obtain the following system with respect to c1(x, t) and
c2(x, t): {

c1(x, t)J1/2−α(
√
λx) + c2(x, t)Jα−1/2(

√
λx) = 0,

c1(x, t)J−1/2−α(
√
λx)− c2(x, t)Jα+1/2(

√
λx) = xα−1/2

√
λ

.

Solving this system, we find

c1 (x, t) =
xα−1/2 Jα−1/2

(√
λx

)
√
λ
[
Jα−1/2

(√
λx

)
J−1/2 −α

(√
λx

)
+ Jα+1/2

(√
λx

)
J1/2 −α

(√
λx

)] ,

c2 (x, t) = −
xα−1/2 J1/2−α

(√
λx

)
√
λ
[
Jα−1/2

(√
λx

)
J−1/2 −α

(√
λx

)
+ Jα+1/2

(√
λx

)
J1/2 −α

(√
λx

)] .
Considering formulas [34]

Jν (x) J1−ν (x) + J−ν (x) Jν−1 (x) =
2 sin νπ

πx
,

we have

c1 (x, t) =
πxα+1/2 Jα−1/2

(√
λx

)
2 cosαπ

, c2 (x, t) = −
πxα+1/2 J1/2−α

(√
λx

)
2 cosαπ

.

Substituting the found values of c1(x, t) and c2(x, t) into the equation (13), we obtain the representation
of the solution to problem (9) and (10) in the from

ω2 (ξ, x, t) =
πx

2 cos (απ)

(
ξ

x

)α+1/2

×
[
Jα−1/2

(√
λx

)
J1/2 −α

(√
λξ

)
− J1/2 −α

(√
λx

)
Jα−1/2

(√
λξ

)]
. (14)

Using the Riemann’s function v (x, t; ξ, η), we can easily obtain the representation of the general
solution to equation (2) in triangular domain Ω1. Indeed, by integrating (4) over the domain Ω1, where
(x, t) is an arbitrary point in Ω, we have

u (x, t) = x−2αt2αu (t, t) vξ (x, t; t, t)− x−2α

t∫
x

ξ2α [uξ (ξ, ξ) vξ (x, t; ξ, ξ) − λu (ξ, ξ) v (x, t; ξ, ξ)

+ v (x, t; ξ, ξ) (uξη (ξ, ξ) + uξ (ξ, ξ)) + u (ξ, ξ) (vξη (x, t; ξ, ξ)− vξ (x, t; ξ, ξ))] dξ

− x−2α

∫∫
Ω1

ξ2αv (x, t; ξ, η) f (ξ, η) dξdη. (15)

This represents the solution in the triangular domain Ω1 using the Riemann function v (x, t; ξ, η).

3. CONSTRUCTION OF THE RIEMANN’S FUNCTION

To construct the Riemann’s function, we will use the methodology from [23].
Let’s consider the following auxiliary problem.
Problem G0. In the domain Ω0 = {(ξ, η) : 0 < ξ < l, 0 < η < h}, find a function u (x, t) satisfying

equation (2), and homogeneous boundary conditions

u(ξ, 0) = 0, 0 ≤ ξ ≤ l, (16)

u (0, η) = 0, uξ (0, η) = 0, 0 ≤ η ≤ h. (17)
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If the Riemann’s function v (x, t; ξ, η) of problem (2), (16), and (17) is known, then the solution to
this problem is represented as [35]

u (x, t) =

∫∫
Ω0

v (x, t; ξ, η) f (ξ, η) dξdη (18)

Here ∂Ω0 denotes the boundary of the domain Ω0, and f (ξ, η) is a given function.
On the other hand, the Riemann function can be defined in another way. Suppose that, constructed by

some other method, formula (18) provides the solution to the problem (2), (16), (17) for any sufficiently
smooth right-hand side f(x, t). Then, due to the uniqueness of the solution to this problem, the kernel
v (x, t; ξ, η) will serve as the Riemann function for the problem (2), (16), and (17).

According to the work [23], to solve the problem (2), (16), and (17) we apply the Erdélyi–Kober
fractional order operator. Therefore, let’s consider some properties of this operator.

4. FRACTIONAL ORDER ERDÉLYI–KOBER OPERATORS

Various modifications and generalizations of classical fractional integration and differentiation oper-
ators are widely used in both theory and applications. Among these modifications are the Erdélyi–Kober
operators [36]

Iη,αf(x) =
2x−2(η+α)

Γ(α)

x∫
0

(x2 − ξ2)
α−1

ξ2η+1f(ξ)dξ, (19)

where α, η ∈ R, α > 0, η ≥ −(1/2), f(x) ∈ L1(0, b), b > 0, and Γ(α) denotes the gamma function [37].
The main properties of operator (19) can be found in reference [36]. The inverse operator to (19), when
0 < α < 1, is given by

I−1
η,αg(x) =

x−2η−1

Γ(1− α)

d

dx

x∫
0

(x2 − s2)
−α

s2(η+α)+1g(s)ds. (20)

For operator (19), the following theorem holds [36].

Theorem 1. Let α > 0, η ≥ −1/2, f(x) ∈ C2(0, b), where b > 0, and x2η+1f(x) is integrable at
zero with lim

x→0
x2η+1f ′(x) = 0. Then, Bx

η+αIη,αf(x) = Iη,αB
x
η f(x), where

Bx
η = x−2η−1 d

dx
x2η+1 d

dx
=

d2

dx2
+

2η + 1

x

d

dx

is the singular Bessel differential operator.
It should be noted that in works [38–42], the Erdélyi–Kober transformation operator has been applied

to solve initial boundary value problems for hyperbolic equations, while in works [23, 43] it has been used
to solve initial boundary value problems for parabolic equations with coefficient singularities.

5. APPLICATION OF THE ERDÉLYI–KOBER OPERATOR FOR THE CONSTRUCTION
OF THE RIEMANN FUNCTION

Let’s assume that the solution to the problem (2), (16), and (17) exists. We seek this solution in the
form

u (x, t) = Ix−(1/2),αU (x, t) =
2x1−2α

Γ (α)

x∫
0

(
x2 − ξ2

)α−1
U (ξ, η) dξ, (21)

where u (x, t) is the unknown function, and the upper index in the operator indicates the variable on
which this operator acts.
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Substituting (21) into boundary conditions (16), (17), and then into equation (2), using Theorem 1
and the formula for the inverse operator (20), we obtain the following problem to find the solution u (x, t)
of the equation

Uxxt + Uxx + λUt = F (x, t) , (22)

subject to the homogeneous boundary conditions

U (x, 0) = 0, 0 ≤ x ≤ l, (23)

U (0, t) = 0, Ux (0, t) = 0, 0 ≤ t ≤ h, (24)

where

F (x, t) =
(
I
(x)
−1/2 ,α

)−1
f (x, t) =

1

Γ (1− α)

d

dx

x∫
0

(
x2 − s2

)−α
s2αf (s, t) ds. (25)

In this case, the solution to the problem (22)–(24) is given by

U (x, t) =

t∫
0

dη

x∫
0

R (x, t; ξ, η)F (ξ, η) dξ, (26)

where R (x, t; ξ, η) is the Riemann kernel associated with the Erdélyi–Kober fractional operator.

Here R (x, t; ξ, η) is the Riemann function associated with problem (22)–(24), constructed in [42]
and defined by the formula

R (x, t; ξ, η) = (ξ − x)K0

(
1;

3

2
, 1, 1;σ1, σ2

)
, (27)

where

K0

(
a; b, c, b′;σ1, σ2

)
=

+∞∑
m,n=0

(a)m+n

(b)m(c)m(b′)n

σ1
m

m!

σ2
n

n!
, (28)

with σ1 = −λ
4 (ξ − x)2, σ2 = η − t.

This series converges when |σ1| , |σ2| < +∞ and b, c, b′, c′ �= 0,−1,−2, . . .. It can be expressed as

K0

(
a; b, c, b′;σ1, σ2

)
=

+∞∑
m=0

(a)m
(b)m(c)m

σm
1

m!
1F1

(
a+m; b′;σ2

)
=

+∞∑
n=0

(a)n
(b′)n

σn
2

n!
1F2 (a+ n; b, c;σ1) ,

or it can be expressed through the Kampe de Feriet function [44]

K0

(
a; b, c, b′;σ1, σ2

)
= F 1;0;0

0;2;1

⎡
⎣a; −; −;

−; b, c, b′;
σ, ω

⎤
⎦ ,

where 1F2 (a; b, c; z) denotes the generalized hypergeometric function, and 1F1 (a; b; z) denotes the
Kummer function [45].

Considering (25), the function F (ξ, η) is rewritten as F (ξ, η) = ∂
∂ξ F̄ (ξ, η), where

F̄ (ξ, η) =
1

Γ(1− α)

ξ∫
0

(ξ2 − s2)−αs2αf(s, η) ds.

It is obvious that if f(s, η) ∈ C(Ω0), then F̄ (0, η) = 0.
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Substituting the expressions for F (ξ, η) from (25) into equation (26), integrating by parts with
respect to the inner integral, and taking into account the equalities R(x, t; ξ, η)|ξ=x = 0 and F̄ (0, η) = 0,
and then changing the order of integration using the Dirichlet formula, we obtain

U(x, t) = − 1

Γ(1− α)

t∫
0

dη

x∫
0

s2αg(x, t; s, η)f(s, η) ds, (29)

where

g(x, t; s, η) =

x∫
s

(ξ2 − s2)−αRξ(x, t; ξ, η) dξ. (30)

Proceeding further, substituting (29) into (21), we obtain

u(x, t) = − 2x1−2α

Γ(α)Γ(1− α)

x∫
0

s2α ds

t∫
0

f(s, η) dη

x∫
s

(x2 − y2)α−1g(y, t; s, η) dy. (31)

Successively changing the order of integration three times in (31), we find

u(x, t) =

x∫
0

t∫
0

Rα(x, t; s, η)f(s, η) ds dη,

where

Rα(x, t; s, η) = − 2x1−2αs2α

Γ(α)Γ(1 − α)

x∫
s

(x2 − y2)α−1g(y, t; s, η) dy. (32)

According to (18), the function Rα(x, t; s, η) represents the Riemann’s function of problem G0.
Substituting (30) into (32), we obtain

Rα(x, t; s, η) = − 2x1−2αs2α

Γ(α)Γ(1 − α)

x∫
s

(x2 − y2)α−1 dy

y∫
s

(ξ2 − s2)−αRξ(y, t; ξ, η) dξ. (33)

Let’s compute the inner integral:

h(y, t; ξ, η) =

y∫
s

(ξ2 − s2)−αRξ(y, t; ξ, η) dξ.

Due to the equality

∂

∂ξ
R (y, t; ξ, η) = K0

(
1;

1

2
, 1, 1; σ̄1, σ2

)
,

where σ̄1 = −λ
4 (ξ − y)2, the function h (y, t; ξ, η) can be represented as

h (y, t; ξ, η) =

y∫
s

(
ξ2 − s2

)−α
K0

(
1;

1

2
, 1, 1; σ̄1, σ2

)
dξ.

Making the change of variables ξ = y − (y − s)μ, we obtain

h (y, t; ξ, η) = (y + s)−α(y − s)1−α

×
1∫

0

μ2α(1− μ)−α

(
1− y − s

y + s
μ

)−α

K0

(
1;

1

2
, 1, 1; σ̃1, σ2

)
dμ,
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where σ̃1 = −λ
4 (y − s)2, Utilizing the expansion of the function K0 (a; b, c; b

′, c′;σ1, σ2) in series (28)
and considering the uniform convergence of this series for any argument values, we change the order of
integration and summation

h (y, t; ξ, η) = (y + s)−α(y − s)1−α
+∞∑

m,n=0

(1)m+n

(1/2)m(1)m(1)n

σ̃m
1

m!

σ2
n

n!

×
1∫

0

μ2m(1− μ)−α

(
1− y − s

y + s
μ

)−α

dμ.

From here, applying formula [36]

1∫
0

tb−1(1− t)c−b−1(1− xt)−adt =
Γ (b) Γ (c− b)

Γ (c)
F (a, b, c;x) , c > b > 0,

we obtain

h (y, t; ξ, η) = (y + s)−α(y − s)1−α
+∞∑

m,n=0

(1)m+n

(1/2)m(1)m(1)n

σ̃m
1

m!

σ2
n

n!

× Γ (2m+ 1)Γ (1− α)

Γ (2m− α+ 2)
2F1 (α, 2m+ 1; 2m − α+ 1;σ3) , (34)

where F (a, b, c;x) is the Gaussian hypergeometric function [36], σ3 =
y−s
y+s .

We apply the following formula to the Gaussian hypergeometric function in expression (34)

2F1 (a, b; c;x) = (1− x)−a
2F1

(
a, c− b; c;

x

x− 1

)
.

Then, (34) takes the following form

h (y, t; s, τ) = (2s)−α(y − s)1−α
+∞∑

m,n=0

(1)m+n

(1/2)m(1)m(1)n

σ̃m
1

m!

σ2
n

n!

× Γ (2m+ 1) Γ (1− α)

Γ (2m− α+ 2)
2F1 (α, 1 − α; 2m− α+ 2;σ4) ,

where σ4 =
s−y
2s . Substituting the found expression for h (y, t; ξ, η) into (33), we obtain

Rα (x, t; s, τ) = − 21−αx1−2αsα

Γ (α) Γ (1− α)

+∞∑
m,n=0

(1)m+n

(1/2)m(1)m(1)n

(−λ/4)m

m!

σ2
n

n!

× Γ (2m+ 1) Γ (1− α)

Γ (2m− α+ 2)

x∫
s

(
x2 − y2

)α−1
(y − s)2m−α+1

2F1 (α, 1− α; 2m − α+ 2;σ4) dy. (35)

Let’s change the variables of the inner integral in expression (35) to y = s+ (x− s) ρ and apply the
following formula [36]

1∫
0

ξc−1(1− ξ)β−1(1− zyξ)−ρ
2F1 (a, b; c;ωyξ) dξ

=
B (c, β)

(1− yz)ρ
F3

(
ρ, a, β, b, c + β;

yz

yz − 1
;ωy

)
.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 9 2024



A CAUCHY PROBLEM FOR A THIRD-ORDER 4607

Then, expression (35) takes the following form

Rα (x, t; s, τ) = x−αsα (x− s)

+∞∑
m,n=0

(1)m+n

(3/2)m(1)m(1)n

σ̂m
1

m!

σ2
n

n!
F3 (α,α, 1 − α, 1 − α, 2m + 2;σ5, σ6) ,

where F3 (α,α
′, β, β′, γ, x, y) =

+∞∑
k,l=0

(α)k(α
′)l(β)k(β

′)l
(γ)k+l

xk

k!
yl

l! is the Horn function [36], B(c, β) = Γ(c)Γ(β)
Γ(c+β)

is the beta function, σ̂1 = −λ
4 (x− s)2, σ5 =

x−s
2x , and σ6 =

s−x
2s . Using the formula [46]

F3

(
α,α′, 1− α, 1 − α′; γ; z,

z

2z − 1

)

= (1− z)γ−1(1− 2z)1−α′
2F1

(
1

2

(
γ − α− α′ + 1

)
,

1

2

(
γ + α− α′) ; γ; 4z (1− z)

)
,

and then sequentially applying formulas [36]

F (a, b, 2b;x) =

(
2

1 +
√
1− x

)2a

2F1

(
a, a− b+

1

2
, b+

1

2
;

(
1−

√
1− x

1 +
√
1− x

)2
)
,

F (a, b, c;x) = (1− x)−bF

(
c− a, b, c;

x

x− 1

)
,

we obtain

Rα (x, t; s, η) = (s− x)
( s

x

)α
+∞∑

m,n=0

(1)m+n

(3/2 )m(1)m(1)n

σ̂m
1

m!

σ2
n

n!
F

(
α, 1 − α,m+

3

2
; σ̄5

)
, (36)

where σ̄5 = − (x−s)2

4xs .

The function Rα (x, t; s, η), defined by equation (36), is the Riemann’s function for problem G0.
It is straightforward to demonstrate that when α = 0, function (36) coincides with the Riemann’s

function for problems (22)–(24), as defined by equation (27).
Therefore, the Riemann’s function for problems (2) and (3) is determined by the formula

v (x, t; ξ, η) = (ξ − x)

(
ξ

x

)α +∞∑
m,n=0

(1)m+n

(3/2 )m(1)m(1)n

σ̂m
1

m!

σ2
n

n!
F

(
α, 1− α,m+

3

2
; σ̄5

)
, (37)

where σ1 = −λ
4 (ξ − x)2, σ2 = η − t, and σ̄5 = − (x−ξ)2

4xξ .

Let’s demonstrate that function (35) satisfies the conditions (5) and (6).
The first condition (6) is immediately satisfied when ξ = x.
The value of the derivative of the function v (x, y; ξ, η) with respect to ξ at ξ = x is

vξ (x, y; ξ, η)|ξ=x =

+∞∑
n=0

(η − t)n

n!
.

Since the right-hand side of this equation represents the series expansion of eη−t, equality (11) follows.
The function v (x, y; ξ, η) when η = t, equals

v (x, t; ξ, η)|η=t = (ξ − x)

(
ξ

x

)α +∞∑
m=0

σm
1

(3/2 )mm!
F (α, 1 − α,m+ 3/2 ; σ̄5) . (38)

By formula [35]
+∞∑
m=0

ym

(c)mm!
F (a, b, c +m;x) = Ξ2 (a, b, c;x, y) , |x| < 1
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the function (38) can be represented as

v (x, t; ξ, η)|η=t = (ξ − x)

(
ξ

x

)α

Ξ2 (α, 1− α, 3/2 ; σ̄5, σ1) , (39)

where Ξ2 (a, b, c;x, y) =
+∞∑

m,n=0

(a)m(b)m
(c)m+nm!n!x

myn is the Humbert function.

Using the notation α− 1/2 = ν in (14), we obtain

ω2 (ξ, x, y) = − πx

2 sin (νπ)

(
ξ

x

)ν+1 [
Jν

(√
λx

)
J−ν

(√
λξ

)
− J−ν

(√
λx

)
Jν

(√
λξ

)

Taking into account formulas [37]

Jν (z) =
1

Γ (ν + 1)

(z
2

)ν

0F1

(
ν + 1,−z2

4

)
, Γ (1 + ν) Γ (1− ν) =

πν

sin (πν)
,

we have

ω2 (ξ, x, t) =
ξ

2ν

(
ξ

x

)ν [( ξ

x

)ν

0F1

(
1 + ν;−λξ2

4

)
0F1

(
1− ν;−λx2

4

)

−
(
x

ξ

)ν

0F1

(
1− ν;−λξ2

4

)
0F1

(
1 + ν;−λx2

4

)]
.

From here, applying formula [36]

0F1 (a; pz) 0F1 (b; qz) =
∞∑
n=0

(pz)n

n!(a)n
F

(
1− a− n,−n; b;

q

p

)
,

we obtain

ω2 (ξ, x, t) =
ξ

2ν

(
ξ

x

)ν
⎡
⎣( ξ

x

)ν +∞∑
n=0

(
−λξ2

4

)n

n!(1 + ν)n
F

(
−ν − n,−n, 1− ν;

x2

ξ2

)

−
(
x

ξ

)ν ∞∑
n=0

(
λξ2/4

)n
n!(1− ν)n

F

(
ν − n,−n, 1 + ν;

x2

ξ2

)]
.

Using formula [46]

F (a, b, a− b+ 1; z) =
(
1−

√
z
)−2a

F

(
a, a− b+

1

2
, 2a− 2b+ 1;− 4

√
z

(1−√
z)

2

)
,

we find

ω2 (ξ, x, t) =
ξ

2ν

(
ξ

x

)ν +∞∑
n=0

σn
1

n!

[
(−4σ̄5)

ν

(1 + ν)n
F

(
−ν − n,

1

2
− ν, 1− 2ν;− 1

σ̄5

)

− (−4σ̄5)
−ν

(1− ν)n
F

(
ν − n,

1

2
+ ν, 1 + 2ν;− 1

σ̄5

)]
.

Considering formula [36]

F (a, b, c; z) =
Γ (c) Γ (b− a)

Γ (b) Γ (c− a)
(−z)−aF

(
a, a− c+ 1, a− b+ 1;

1

z

)

+
Γ (c) Γ (a− b)

Γ (a) Γ (c− b)
(−z)−bF

(
b, b− c+ 1, b− a+ 1;

1

z

)
,
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we have

ω2 (ξ, x, t) =
ξ

2ν

(
ξ

x

)ν ∞∑
n=0

σn
1

n!

[
A1(−σ̄5)

−nΓ (1/2 + n)F

(
ν − n,−ν − n,

1

2
− n; σ̄5

)

+ A2(−σ̄5)
1/2 Γ (−1/2 − n)F

(
1

2
+ ν,

1

2
− ν, n+

3

2
; σ̄5

)]
, (40)

where

A1 =
4νΓ (1− 2ν)

(1 + ν)nΓ (1 + n− ν) Γ (1/2 − ν)
− 4−νΓ (1 + 2ν)

(1− ν)nΓ (1 + ν + n) Γ (1/2 + ν)
,

A2 =
4νΓ (1− 2ν)

(1 + ν)nΓ (1/2 − ν) Γ (−ν − n)
− 4−νΓ (1 + 2ν)

(1− ν)nΓ (1/2 + ν) Γ (ν − n)
.

Hence, using the formulas Γ (2z) = 22z−1
√
π

Γ (z) Γ
(
z + 1

2

)
and Γ (z) Γ (1− z) = π

sin(πz) , we find A1 = 0

and A2 = (−1)n 2ν√
π
. Substituting the found values of A1 and A2 into (40) and considering Γ

(
−1

2 − n
)
=

(−1)n(−2
√
π)

(3/2 )n
, after some calculations we obtain

ω2 (ξ, x, y) = − |ξ − x|
(
ξ

x

)ν+ 1
2

Ξ2 (1/2 + ν, 1/2 − ν, 3/2 , σ̄5, σ1) . (41)

If we denote α− 1/2 = ν, then the function (41) coincides with (39). Thus, the formula

Ξ2

(
α, 1 − α, 3/2 ;−λ

4
(ξ − x)2,−(ξ − x)2

4xξ

)

=
π
√
xξ

2(x− ξ) cos (απ)

[
Jα−1/2

(√
λx

)
J1/2 −α

(√
λξ

)
− J1/2 −α

(√
λx

)
Jα−1/2

(√
λξ

)]
,

which is not found in references, has been proved.
Let’s return to the investigation of formula (15). Applying integration by parts to this equation, we

obtain
u (x, t) = x−2αt2αu (t, t) vξ (x, t; t, t)− x−2αt2αuξ (t, t) v (x, t; t, t) + uξ (x, x) v (x, t;x, x)

− x−2αt2αu (t, t) (vη (x, t; t, t)− v (x, t; t, t)) + u (x, x) (vη (x, t;x, x)− v (x, t;x, x))

+ x−2α

t∫
x

[(
2αξ2α−1uξ (ξ, ξ) + ξ2αuξξ (ξ, ξ)− ξ2αuξη (ξ, ξ)− 2ξ2αuξ (ξ, ξ) + λξ2αu (ξ, ξ)

− 2αξ2α−1u (ξ, ξ)
)
v (x, t; ξ, ξ) −

(
2αξ2α−1u (ξ, ξ) + ξ2αuξ (ξ, ξ)

)
vη (x, t; ξ, ξ)

]
dξ

− x−2α

∫∫
Ω1

ξ2αv (x, t; ξ, η) f (ξ, η) dξdη. (42)

The functions uξ, uη, uξξ, and uξη defined at η = ξ are found from the initial conditions of the Cauchy
problem

u (ξ, ξ) = ψ1 (ξ) , uξ (ξ, ξ)− uη (ξ, ξ) =
√
2ψ2 (ξ) ,

uξ (ξ, ξ) + uη (ξ, ξ) = ψ′
1 (ξ) ,

uξξ (ξ, ξ)− 2uξη (ξ, ξ) + uηη (ξ, ξ) = 2ψ3 (ξ) ,

uξξ (ξ, ξ) + 2uξη (ξ, ξ) + uηη (ξ, ξ) = ψ′′
1 (ξ) .

Thus, we obtain

uξ (ξ, ξ) =

√
2ψ2 (ξ) + ψ′

1 (ξ)

2
, uη (ξ, ξ) =

ψ′
1 (ξ)−

√
2ψ2 (ξ)

2
,
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uξξ (ξ, ξ) =
ψ′′

1 (ξ) + 2
√
2ψ′

2 (ξ) + 2ψ3 (ξ)

4
, uξη (ξ, ξ) =

ψ′′
1 (ξ)− 2ψ3 (ξ)

4
. (43)

Considering series (37), the function v (x, t; ξ, η) can be represented as

v (x, t; ξ, η) = (ξ − x)

(
ξ

x

)α +∞∑
k=0

(α)k(1− α)k
(3/2 )k

σ̄k
5

k!
K0

(
1;

3

2
+ k, 1, 1;σ1, σ2

)
.

The following differentiation formulas for series (28) are valid:

∂

∂σ2
K0

(
a; b, c; b′;σ1, σ2

)
=

a

b′
K0

(
a+ 1; b, c; b′ + 1;σ1, σ2

)
,(

σ2
∂

∂σ2
+
(
b′ − 1

))
K0

(
a; b, c; b′;σ1, σ2

)
=

(
b′ − 1

)
K0

(
a; b, c; b′ − 1;σ1, σ2

)
.

Using these formulas, we compute the corresponding derivatives of the function v (x, t; ξ, η):

v (x, t;x, x) = 0, vη (x, t;x, x) − v (x, t;x, x) = 0,

vη (x, t; t, t)− v (x, t; t, t) = −λ

6
(t− x)3xαt−αΞ2 (α, 1− α; 5/2;σ1;σ2) ,

v (x, t; t, t) = xαt−α (t− x) Ξ2 (α, 1 − α; 3/2;σ1;σ2) ,

vξ (x, t; t, t) =
xα

(
tα − αtα + αtα−1x

)
t2α

,

vη (x, t; ξ, ξ) = (ξ − x)

(
ξ

x

)α +∞∑
k=0

(α)k(1− α)k
(3/2)k

θk

k!
R

(
2;

3

2
+ k, 1, 2;σ1;σ2

)
. (44)

Substituting the defined expressions (43) and (44) into (42), we obtain the solution of problem (2) and
(3) in the form

u (x, t) =
tα − αtα + αtα−1x

xα
ψ1 (t)−

1

2

(√
2ψ2 (t) + ψ′

1 (t)
)
x−αtα (t− x) Ξ2 (α, 1 − α; 3/2;σ1;σ2)

+
λ

6
(t− x)3x−αtαψ1 (t) Ξ2 (α, 1 − α; 5/2;σ1;σ2)

+ x−2α

t∫
x

{
(ξ − x)

(
ξ3

x

)α +∞∑
k=0

(α)k(1− α)k
(3/2)k

σ̄k
5

k!
K0

(
1;

3

2
+ k, 1, 1;σ1; σ̄2

)
Φ1 (ξ)

+ (ξ − x)

(
ξ3

x

)α +∞∑
k=0

(α)k(1− α)k
(3/2)k

σ̄k
5

k!
K0

(
2;

3

2
+ k, 1, 2;σ1; σ̄2

)
Φ2 (ξ)

}
dξ

− x−2α

∫∫
Ω1

ξ2αv (x, t; ξ, η) f (ξ, η) dξdη, (45)

where σ1 = −λ
4 (ξ − x)2, σ̄2 = ξ − t, σ̄5 = − (x−ξ)2

4xξ ,

Φ1 (ξ) =

√
2

2
ψ′

2 (ξ) + ψ3 (ξ) +

(
λ− 2α

ξ

)
ψ1 (ξ) +

(
α

ξ
− 1

)(√
2ψ2 (ξ) + ψ′

1 (ξ)
)
,

Φ2 (ξ) =
2α

ξ
ψ1 (ξ) +

√
2

2
ψ2 (ξ) +

1

2
ψ′

1 (ξ) .

Theorem 2. Let ψj (x) ∈ C2−j (R+), j = 0, 2, and all corresponding derivatives of the initial
functions vanish at x = 0. Then, the function u (x, t), defined by (45), is the unique solution to the
Cauchy problem (2) and (3).
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6. CONCLUSIONS

Applying the Erd’alyi–Kober transmutation operator we constructed the Riemann function of the
Cauchy problem for a pseudo-parabolic equation with singular coefficients. Based on this, we found
the exact solution to the investigated problem. Despite the advancement of modern computational
technology, constructing exact solutions for boundary value problems of partial differential equations
remains an important and relevant task. These solutions allow for a deeper understanding of the
qualitative features of described processes and phenomena, the properties of mathematical models, and
can also be used as benchmark examples for asymptotic, approximate, and numerical methods.
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