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Abstract—We consider linear bounded operators acting in Banach spaces with a basis, such
operators can be represented by an infinite matrix. We prove that for an invertible operator there
exists a sequence of invertible finite-dimensional operators so that the family of norms of their
inverses is uniformly bounded. It leads to the fact that solutions of finite-dimensional equations
converge to the solution of initial operator equation with infinite-dimensional matrix.
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1. INTRODUCTION

1.1. On Discrete Equations

Discrete equations is a very important mathematical object. This is related to computer calculations
which help us to find numerical solution if we don’t know its analytical expression. Discrete equations
can appear via difference schemes [1] or difference potentials [2], or discrete convolutions [3]. The latter is
more interesting for us because we try to develop discrete theory for pseudo-differential equations based
on ideas and methods [4, 5]. Certain realization of these ideas and methods is presented in authors’
papers [6, 8–13]. All mentioned papers are related to a solvability problem for discrete pseudo-differential
equations. Such equations are roughly speaking infinite systems of linear algebraic equations, and for
numerical solution we need to approximate these infinite systems by certain finite systems. In such
cases, they used the reduction method.

This reduction method was developed in [3] for abstract situation and for different classes of operators.
Some results were obtained in papers [14, 15] for general operators and discrete convolutions. But these
papers don’t give an answer to the question if arbitrary invertible operator admits the reduction method,
assuming the operator is presented by infinite matrix. In this paper, we will prove this assertion.

1.2. Pre-History: Digital Operators, Discrete Equations and Discrete Boundary Value Problems

Here we will describe some problem which have been considered earlier, these problems are closely
related to topic of the paper, and we will explain why we are interested in the infinite matrices and the
reduction method.

The classical pseudo-differential operator in Euclidean space R
m is defined by the formula [4]

(Au)(x) =

∫
Rm

Ã(x, ξ)e−ix·ξũ(ξ)dξ,
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where the sign ∼ over a function denotes its Fourier transform

ũ(ξ) =

∫
Rm

u(x)eix·ξdx,

and the function Ã(x, ξ) is called a symbol of a pseudo-differential operator A.

Our main goal was describing a periodic variant of this definition and studying its certain properties
related to solvability of corresponding equations in canonical domains of an Euclidean space. This
problem is very large and in our opinion it should include the following aspects according to a lot of
physical and technical applications of such operators and related equations:

1. infinite discrete Fourier transform as a natural technique for such equations;

2. choice of appropriate discrete functional spaces;

3. studying solvability for infinite discrete equations;

4. studying solvability of approximating finite discrete equations;

5. a comparison between continuous and infinite discrete equations;

6. a comparison between infinite discrete and finite discrete equations.

This is not completed list of questions for studying which we intend to consider. Some results in this
direction were obtained for simplest pseudo-differential operators (Calderon–Zygmund operators [9])
and corresponding equations. Also certain results were related to approximate solutions.

There are few variants of the theory of discrete boundary value problems (see, for example, [1, 2]), but
these theories are related especially to partial differential operators and do not use the harmonic analysis
technique. Since the classical theory of pseudo-differential operators is based on the Fourier transform
we will use the discrete Fourier transform and discrete analogue of pseudo-differential operators which
include discrete analogues of partial differential and some integral convolution operators.

Given function ud of a discrete variable x̃ ∈ hZm, h > 0, we define its discrete Fourier transform by
the series

(Fdud)(ξ) ≡ ũd(ξ) =
∑
x̃∈Zm

eix̃·ξud(x̃), ξ ∈ �T
m,

where T
m = [−π, π]m, � = h−1, and partial sums are taken over cubes

QN = {x̃ ∈ hZm : x̃ = (x̃1, · · · , x̃m), max
1≤k≤m

|x̃k| ≤ N}.

We will remind here some definitions of functional spaces [6] and will consider discrete analogue of

the Schwartz space S(hZm). Let us denote ζ2 = h−2
m∑
k=1

(e−ih·ξk − 1)2 and introduce the following.

The space Hs(hZm) is a closure of the space S(hZm) with respect to the norm

||ud||s =

⎛
⎝ ∫
�Tm

(1 + |ζ2|)s|ũd(ξ)|2dξ

⎞
⎠

1/2

.

Fourier image of the space Hs(hZm) will be denoted by H̃s(�Tm). One can define some discrete
operators for such functions ud.

If Ãd(ξ) is a periodic function in R
m with the basic cube of periods �T

m, then we consider it as a
symbol. We will introduce a digital pseudo-differential operator in the following way.
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A digital pseudo-differential operator Ad in a discrete domain Dd is called the operator [6]

(Adud)(x̃) =
∑

ỹ∈hZm

∫
�Tm

Ãd(ξ)e
i(x̃−ỹ)·ξũd(ξ)dξ, x̃ ∈ Dd,

We use the class Eα, α ∈ R, [6] with the following condition

c1(1 + |ζ2|)α/2 ≤ |Ad(ξ)| ≤ c2(1 + |ζ2|)α/2

and universal positive constants c1, c2.

Let D ⊂ R
m be a domain. We will study the equation

(Adud)(x̃) = vd(x̃), x̃ ∈ Dd, (1)

in the discrete domain Dd ≡ D ∩ hZm and will seek a solution ud ∈ Hs(Dd), vd ∈ Hs−α
0 (Dd) [6–8].

Earlier some canonical domains [10–12] were considered, and some results on unique solvability of
these equations and related discrete boundary value problems were described in these papers.

As we see, the equation (1), in general, is an infinite system of linear algebraic equations. To use
computer calculations we need to approximate this system by a finite one. This is basic motive for this
paper, and we will try to justificate this fact for a general situation.

2. INFINITE MATRICES

Let X be a Banach space with standard basis ei = (0, . . . , 0, 1︸︷︷︸
i

, 0, . . . ), and we consider an infinite

system of linear algebraic equations with the matrix A = (aij)
∞
i,j=1; this matrix is a representation of

linear bounded operator A in the space X:

A : X → X.

Let’s introduce the following equation in the space X

Ax = y, y ∈ X. (2)

Let Pn be a projector on a linear span of vectors ei, i = 1, . . . , n; this linear span will be denoted by
Xn. Then, we put An = PnAPn so that An : Xn → Xn and we write the truncated equation

Anxn = Pny (3)

in the vector space Xn. Thus, the operator An is represented by the matrix (aij)
n
i,j=1. Obviously, the

sequence of operators An strongly converges to A, i.e., ∀x ∈ X, lim
n→∞

Anx = Ax.

We will give here one auxiliary result which will help us to obtain main theorem.

Lemma 1. If a certain x ∈ X, lim
n→∞

Anx = Ax, and there is the sequence {xn}∞n=1 ⊂ X such that

lim
n→∞

xn = x, then lim
n→∞

Anxn = Ax.

Proof. Indeed, we have

||Ax−Anxn|| ≤ ||Ax−Anx||+ ||Anx−Anxn|| ≤ ||Ax−Anx||+ ||A|| ||x − xn||.

Both summands ||Ax−Anx|| and ||A|| · ||x− xn|| tend to zero according to assumptions of Lemma,
and the proof is completed. �
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3. MAIN RESULT
The following assertion is called usually the "reduction method".
Theorem 1. If the inverse bounded operator A−1 : X → X exists, then the following assertions

are valid:
1) starting from a certain N,∀n ≥ N, the operators An : Xn → Xn are invertible;
2) we have the estimate ||A−1

n || ≤ C, with constant C non-depending on n;
3) the solution xn to the equation (3) converges to the solution x of the equation (2) under

n → ∞.
Proof. We use the proof by contradiction applying the theory of finite systems of linear algebraic

equations. Namely, the Cramer’s rule asserts that the operator An with the matrix (aij)
n
i,j=1 will be

invertible in the space Xn iff detAn �= 0.
First step. Let’s note that there are two possibilities for considered situation: either starting from a

certain N,∀n ≥ N, the operators An : Xn → Xn are invertible or there is a subsequence Ank
of non-

invertible operators. If the first situation is valid, then we have the needed assertion. That’s why
we assume that the second situation is realized. So, we have a sequence of non-invertible operators
Ank

, k → ∞. We will show that this assumption leads to a contradiction.
If operators Ank

are invertible, then detAnk
= 0. But then there exists such a matrix (aij)

nk
i,j=1 with

a certain non-zero minor so that all minor of bigger order are vanishing, otherwise all matrices Ank
will

be null-matrices. We will assume (without loss of generality) that this minor is related to the matrix

Amk=

⎛
⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1mk

a21 a22 · · · a2mk

· · · · · · · · ·

amk1 amk2 · · · amkmk

⎞
⎟⎟⎟⎟⎟⎟⎠

, mk < nk,

and detAmk
�= 0. This implies that the homogeneous system Ank

xnk
= 0 has non-trivial solutions.

Now we will describe their structure.
Let’s denote by Ymk

the space Xnk

Xmk

so that Xnk
= Xmk

⊕ Ymk
, and the representation

xnk
= xmk

+ ymk
, xmk

∈ Xmk
, ymk

∈ Ymk
,

is unique for arbitrary xnk
∈ Xnk

.
We introduce the rectangular (mk × nk)-matrix Bmk

of the following type

Bmk=

⎛
⎜⎜⎜⎜⎜⎜⎝

a1mk+1 a1mk+2 · · · a1nk

a2mk+1 a2mk+2 · · · a2nk

· · · · · · · · ·
amkmk+1 amkmk+2 · · · amknk

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Such operator Bmk
is uniformly bounded as an operator Ynk−mk

→ Xmk
because

||Bmk
ymk

|| ≤ ||Aymk
||.

Therefore, we have the following property

xmk
= −A−1

mk
Bmk

ymk
.

If we will transfer to a limit, then we will see that the operator A has infinite-dimensional kernel, thus
it is non-invertible, and we have contradiction.

Second step. According to the first step we have that starting from a certain N,∀n ≥ N, the
operators An : Xn → Xn are invertible. Let’s assume that the sequence ||A−1

n || is unbounded. It means
that there are sequences {xn}∞n=1 ⊂ Xn and {cn}∞n=1, cn > 0 such that

||A−1
n xn|| ≥ cn||xn||, lim

n→∞
cn = ∞.
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If we put x′
n = xn/||xn|| so that ||x′

n|| = 1, then we can write

||A−1
n x′

n|| ≥ cn. (4)

Let yn = A−1
n x′

n. According to (4) we have yn → ∞. Then,

Anyn = x′
n, ||Anyn|| = 1.

We put y′
n = yn/||yn||, ||y′

n|| = 1 and then

||Any
′
n|| = 1/||yn|| → 0, n → ∞.

Thus, we have the sequence {y′
n}∞n=1, ||y′

n|| = 1 such that

||Any
′
n|| → 0, n → ∞. (5)

Let’s consider Any
′
n −Ay′

n. This is a vector of the following type⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

· · ·
0

n∑
k=1

an+1ky
′
k

n∑
k=1

an+2ky
′
k

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where first n coordinates are zero. It seems That this vector tends to zero under n → ∞. But there is a
counterexample, the basis {ek}∞k=1. Nevertheless, we will find a contradiction using another way.

Let’s consider the sequence of operators An more carefully. Obviously, according to (5), we have

inf
||y||=1

||Any|| = αn, lim
n→∞

αn = 0.

Further, for an arbitrary y ∈ X, ||y|| = 1 we have

|||Any|| − ||Ay||| ≤ ||Any −Ay||,
and then

||Ay|| ≤ ||Any|| + ||Any −Ay||.
Thus,

inf
||y||=1

||Ay|| ≤ inf
||y||=1

||Any||+ ||Any −Ay|| ≤ αn + ||Any−Ay||

for all y ∈ X. Fix y ∈ X. Given ε > 0 we can find such N ∈ N that ∀n ≥ N we have

αn < ε/2, ||Any −Ay|| < ε/2

so that
inf

||y||=1
||Ay|| < ε,

and we conclude
inf

||y||=1
||Ay|| = 0. (6)

The equality (6) implies that there is the sequence {zk}∞k=1, ||z||k = 1 such that

lim
k→∞

Azk = 0.

But the operator A is invertible, and then lim
k→∞

zk = 0. The latter assertion is a contradiction.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 9 2024



DISCRETE EQUATIONS AND THE REDUCTION METHOD 4629

Third step. This step is related to a convergence. We have

x = A−1y

and
xn = A−1

n Pny

We will denote Pny = yn and estimate x− xn. Let’s write

x− xn = A−1y −A−1
n yn =

(
A−1y −A−1yn

)
+

(
A−1yn −A−1

n yn
)
.

and estimate summands separately in view of the equality

||x− xn|| = ||A−1y −A−1
n yn||.

Now we can apply Lemma with A−1 and A−1
n instead of A and An, ant Theorem is proved. �

Remark. May be such a result exists in mathematical literature but the authors have no appropriate
information.

4. CONCLUSIONS

This studying is very important for our studying discrete pseudo-differential equations and related
discrete boundary value problems. As a rule such problems lead to infinite systems of linear algebraic
equations, and we need a verification for change the infinite system by finite one. Moreover, pseudo-
differential operators are defined in Fourier images, and now is not clear what approach is more effective
from computational point of view, original space or its Fourier image.

FUNDING

This work was supported by ongoing institutional funding. No additional grants to carry out or direct
this particular research were obtained.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

REFERENCES
1. A. A. Samarskii, The Theory of Difference Schemes (CRC Press, Boca Raton, 2001).
2. V. Ryaben’kii, Method of Difference Potentials and its Applications (Springer, Berlin, 2012).
3. I. C. Gohberg and I. A. Feldman, Convolution Equations and Projection Methods for Their Solution

(AMS, Providence, RI, 2005).
4. G. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations (AMS, Providence, RI,

1981).
5. V. B. Vasil’ev, Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the

Theory of Boundary Value Problems in Non-Smooth Domains (Kluwer Academic, Dordrecht, 2000).
6. A. V. Vasilyev and V. B. Vasilyev, “Pseudo-differential operators and equations in a discrete half-space,” Math.

Model. Anal. 23, 492–506 (2018).
7. A. V. Vasilyev and V. B. Vasilyev, “On some discrete boundary value problems in canonical domains,”

in Differential and Difference Equations and Applications, Vol. 230 of Springer Proc. Math. (Cham,
Springer, 2018), pp. 569–579.

8. V. Vasilyev, “On discrete pseudo-differential operators and equations,” Filomat 32, 975–984 (2018).
9. A. Vasilyev and V. Vasilyev, “Discrete singular operators and equations in a half-space,” Azerb. J. Math. 3,

84–93 (2013).
10. A. Vasilyev and V. Vasilyev, “Digital operators, discrete equations and error estimates,” in Numerical

Mathematics and Advanced Applications ENUMATH 2017, Proceedings of the European Conference,
Bergen, Norway, September 25–29, 2017, Lect. Notes Comput. Sci. Eng. 126, 983–991 (2018).

11. O. Tarasova and V. Vasilyev, “Approximation properties of discrete boundary value problems for elliptic
pseudo-differential equations,” in Numerical Mathematics and Advanced Applications. ENUMATH 2019,
Proceedings of the European Conference, Egmond aan Zee, The Netherlands, September 30–October
4, 2019, Lect. Notes Comput. Sci. Eng. 139, 1089–1097 (2021).

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 9 2024



4630 VASILYEV et al.

12. A. V. Vasilyev, V. B. Vasilyev, and O. A. Tarasova, “Discrete boundary value problems as approximate
constructions,” Lobachevskii J. Math. 43, 1446–1457 (2022).

13. A. Vasilyev, V. Vasilyev, and A. Mashinets, “Digital operators and discrete equations as computational tools,”
in Computational and Mathematical Models in Biology, Vol. 38 of Nonlinear Systems and Complexity
(Springer, Cham, 2023), pp. 35–57.

14. A. V. Kozak, “A local principle in the theory of projection methods,” Sov. Math. Dokl. 14, 1580–1583 (1973).
15. A. V. Kozak and I. B. Simonenko, “Projection methods for the solution of multidimensional discrete equations

in convolutions,” Sib. Math. J. 21, 235–242 (1980).

Publisher’s Note. Pleiades Publishing remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.
AI tools may have been used in the translation or editing of this article.

LOBACHEVSKII JOURNAL OF MATHEMATICS Vol. 45 No. 9 2024


		2024-12-17T13:28:48+0300
	Preflight Ticket Signature




