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Abstract—Euler–Poisson–Darboux equation is considered, containing the generator of the Bessel
operator function. Sufficient conditions for the unique solvability of the Cauchy problem for negative
values of the equation parameter are obtained, in this case, instead of the initial condition on the first
derivative, a condition on the derivative of a higher order is specified, the order of which depends on
the parameter of the equation. The question of the unique solvability of the Cauchy problem for the
factorized Euler–Poisson–Darboux equation is investigated. Examples are given.
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INTRODUCTION

Study of differential equations with unbounded operator coefficients, acting in the Banach space E,
stimulates the development of the theory of resolving operators of the corresponding initial tasks. As a
result of studies of first-order evolutionary equations u′(t) = Au(t) semigroups of linear operators T (t)
arose, and when studying the second-order equation (abstract wave equation) u′′(t) = Au(t)—operator
cosine functions C(t). Relaxation of requirements on resolving operators of the Cauchy problem for
abstract differential equations of the first and second orders led to the concept of an integrated semigroup
and an integrated cosine operator function. For terminology and literature sources, see monographs
[1, 2], and review papers [3, 4].

The Bessel operator function (BOF) was introduced into consideration in [5, 6] as a resolving
operator Cauchy problem for the Euler–Poisson–Darboux equation (EPD). But, just as in the theory of
semigroups and operator cosine functions, the family of Bessel operator functions can be introduced (see
[7]) independently from the EPD differential equation with which it is ultimately connected, and further
in this section we will recall the process of constructing the BOF.

An important role in constructing the family is played by the operator depending on the parameter
k > 0 generalized shift T t

s , defined by the equality (see [8])

T t
sY (s) =

Γ(k/2 + 1/2)√
π Γ(k/2)

π∫
0

Y
(√

s2 + t2 − 2st cosϕ
)
sink−1 ϕ dϕ, s, t ≥ 0,

where Γ(·) is the Euler gamma function. The generalized shift operator depends on the parameter k > 0,
but, following [8], we will not note this fact in his entry.

Let E be a Banach space, parameter k > 0 and Yk(·) : [0,∞) → B(E) be an operator function, acting
in the space of linear bounded operators B(E).
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Definition 1. A strongly continuous family of linear bounded operators depending on the
parameter k > 0 Yk(t) : [0,∞) → B(E) is called the Bessel operator function if

Yk(0) = I, Yk(t)Yk(s) = T t
sYk(s), s, t ≥ 0

and there exist constants Υ ≥ 1, ω ≥ 0 such that

||Yk(t)|| ≤ Υeωt, t ≥ 0.

Associated with the BOF family is the Bessel differential operator

d2

dt2
+

k

t

d

dt
,

which often occurs in differential equations with axial symmetry.
Definition 2. BOF Yk(t) generator is the operator A with domain D(A), consisting of those

x ∈ E for which the function Yk(t)x is twice differentiable at the point t = 0, and which is defined
by the equality

Ax = lim
t→0+

(
d2Yk(t)x

dt2
+

k

t

dYk(t)x

dt

)
.

Statements 1)–5) given later in this section were proven in [7].
1) If the operator A is a generator of the BOF Yk(t), then it is closed and its domain of definition D(A)

is dense in E. Moreover, E contains a dense set of elements on which all powers of the operator A are
defined.

2) For any t, s ≥ 0 and x ∈ D(A) the following equalities hold

Yk(t)Yk(s) = Yk(s)Yk(t), AYk(t)x = Yk(t)Ax.

3) Let x ∈ D(A) and t > 0, then Yk(t)x ∈ D(A) and

AYk(t)x =
d2Yk(t)x

dt2
+

k

t

dYk(t)x

dt
.

4) If u0 ∈ D(A), then the function Yk(t)u0 is the only solution to the following Cauchy problem for
the EPD equation

u′′(t) +
k

t
u′(t) = Au(t) (t > 0), u(0) = u0, u′(0) = 0. (1)

A literature review of publications related to the abstract EPD equation can be found in [5–7]. And
in [9, 10] there is an extensive list of publications on equations in partial derivatives with the Bessel
operator.

In what follows, it is convenient to use the symbol Y0(t) to denote the cosine operator function C(t)
with generator A, and the class of operators that are the generator of some BOF Yk(t), k ≥ 0 will be
denoted by Gk. Criteria for membership of A ∈ Gk or, which is the same, criteria for uniform correctness
of the initial problem (1), are given in [5, 6].

5) Let 0 ≤ k < m and the operatorA be a generator of the BOFYk(t). Then, Awill also be a generator
of Ym(t), in this case the corresponding BOF Ym(t) has the form

Ym(t) =
2Γ(m/2 + 1/2)

Γ(k/2 + 1/2)Γ(m/2 − k/2)

1∫
0

sk(1− s2)(m−k)/2−1Yk(ts) ds. (2)

The equality (2), from which the embedding Gk ⊂ Gm, m > k follows, is called the formula for the
shift of the BOF by parameter.

If the operator A is a generator of the cosine operator function Y0(t) = C(t), then from the equality
(2) for k = 0 it follows that the BOF Ym(t) is an operator cosine function integrated in a special way. For
more details on this, see [11].

We also point out that in this work we make do with the concept of an integral of a continuous
function, but if necessary, we can use the Bochner integral of a function with a value in Banach space.
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1. CAUCHY PROBLEM FOR THE EULER–POISSON–DARBOUX EQUATION
WITH NEGATIVE VALUES OF THE PARAMETER EQUATIONS

In the Banach space E, consider the Cauchy problem of the Euler–Poisson–Darboux equation

u′′(t) +
μ

t
u′(t) = Au(t), t > 0, (3)

u(0) = u0, u′(0) = 0. (4)

As was already noted in the introduction, for μ ≥ 0 and A ∈ Gμ this problem is uniformly correct. At
value of the parameter μ < 0 the task of finding a solution to the equation (3) satisfying the conditions
(4) is not correct due to the loss of uniqueness of the solution. Issues of non-uniqueness of solutions
were discussed previously in [12].

The work [13] describes the process of constructing one of the operator functions Yμ(t), which allows
for Yk(t), k ≥ 0 find a solution to the equation (3) for μ < k, including for μ < 0, satisfying the conditions
(4). Further, in Theorems 1–3, we present the result of this process in the edition we need. In the
following theorems, the assumption A ∈ Gk for some k ≥ 0 means, in particular, that with the operator
A the Cauchy problem is correctly solvable (1) and Yk(t) is the resolving operator for this problem.

Theorem 1 [13]. Suppose that A ∈ Gk for some k ≥ 0, μ < k, μ 	= 1− 2N , N ∈ N, and let l be
the smallest natural number such that q = 2l + μ ≥ k, u0 ∈ D

(
A[l/2]+2

)
. Then, the function

Yμ(t)u0 =
t1−μ

(q − 1)(q − 3) · · · (μ + 1)

(
1

t

d

dt

)l (
tq−1Yq(t)u0

)
(5)

is a solution to the problem (3), (4).
Theorem 2 [13]. Let the conditions of Theorem 1 be satisfied for μ = 0. Then, the function

Z1(t)u0 =
2

π

1∫
0

(
1− s2

)−1/2
ln

(
t
(
1− s2

))
Y0(ts)u0 ds (6)

is a solution to the equation (3) for μ = 1 and satisfies the condition

lim
t→0

tZ ′
1(t)u0 = u0.

Theorem 3 [13]. Suppose that A ∈ Gk for some k ≥ 0, μ = 1− 2N, N ∈ N, and let l be the
smallest natural number such that 2l ≥ k, u0 ∈ D

(
A[N/2+l/2]+2

)
. Then, the function

Yμ(t)u0 =
t2N

(−2)N−1(N − 1)!

(
1

t

d

dt

)N

Z1(t)u0 (7)

is a solution to the problem (3), (4).
Thus, the formulas (5)–(7) for μ < k define the function Yμ(t)u0, which is a solution to the problem

(3), (4), where A ∈ Gk for some k ≥ 0. The operator function Yμ(t) is defined on the domain of definition
D

(
An(μ)

)
of the operator An(μ), and the exponent n(μ) depending on μ is indicated in Theorems 1 and 3.

Note also that this function will have a unique solution only for μ ≥ 0, and for μ < 0 the uniqueness
is violated due to the presence of a nonzero solution t1−μY2−μ(t)u1 for the equation (3), satisfying
conditions u(0) = u′(0) = 0.

As established in [14], in the case μ < 0 for the equation (3) the initial value problem is correct special
type with conditions

u(0) = u0, lim
t→0

tμ (u(t)− Yμ(t)u0)
′ = u1, (8)

the only solution to which is the function

u(t) = Yμ(t)u0 +
t1−μ

1− μ
Y2−μ(t)u1. (9)
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If μ 	= 1− 2N, N ∈ N, then instead of the initial problem of a special form with conditions (8) we can
also consider the classical formulation of initial conditions. In this paper, we will show that to identify
a unique solution EPD equation (3) for μ < 0, it is necessary in (4) instead of the initial condition for
the first derivative u′(0) = 0 set a condition on the derivative at zero of a higher order. The order of this
derivative will depend from μ < 0. This setting of initial conditions excludes the appearance in (9) of
solutions of the form t1−μY2−μ(t)u1, but, naturally, requires increased smoothness of the initial element
u0.

Theorem 4. Suppose that A ∈ Gk for some k ≥ 0 and let the parameter μ < 0 belongs either
to the interval −2m+ 1 < μ < −2m+ 2 or to the interval −2m ≤ μ < −2m+ 1, where m ∈ N. If
u0 ∈ D

(
An(μ)+[m/2]+1

)
, then defined by the equalities (5)–(7) the function u(t) = Yμ(t)u0 is the

only solution to the EPD equation (3), satisfying the conditions

u(0) = u0, u(2m+1)(0) = 0. (10)

Proof. As stated in Theorems 1 and 3, the function Yμ(t)u0 is a solution equation (3) and satisfies
the first condition in (10). Let’s show that she also satisfies the second condition in (10).

To do this, we represent the function Yμ(t)u0 defined by the equality (5) in the form

Yμ(t)u0 = Yq(t)u0 + b1tY
′
q (t)u0 + b2t

2Y ′′
q (t)u0 + b3t

3Y (3)
q (t)u0 + . . . + blt

lY (l)
q (t)u0 (11)

with some constants bj, j = 1, ..., l.
For the BOF Yq(t) the relation is valid (see (5)–(7))

Y ′
q (t)u0 =

t

q + 1
Yq+2(t)Au0,

therefore, each term in the sum from the formula (11) for t → 0 has an even order in t, in particular, the
first term is of order t0, the second is t2, the third is t2, the fourth is t4, etc. Consequently, if for t = 0
derivatives of odd order 2m+ 1 of the function are defined Yμ(t)u0, μ 	= 1 − 2N , N ∈ N, then they all
vanish.

To prove the theorem, it remains to establish the uniqueness of the solution to the problem (3), (10),
which we will lead from the contrary. Let u1(t) and u2(t) be two solutions to this problem. Consider a
function of two variables

w(t, y) = f (Yk(y) (u1(t)− u2(t))) ,

where f ∈ E∗ (E∗ is the dual space), t, y ≥ 0. She’s obviously satisfies the following equation and
conditions

∂2w(t, y)

∂t2
+

μ

t

∂w(t, y)

∂t
=

∂2w(t, y)

∂y2
+

k

y

∂w(t, y)

∂y
, t, y > 0, (12)

w(0, y) = 0, w(2m+1)(0, y) = 0. (13)

We interpret the function w(t, y) as a generalized function and to the problem (12), (13) We apply
the Fourier–Bessel transform to the variable y. For the image ŵ(t, λ) in the space of regular generalized
functions we obtain the following problem

∂2ŵ(t, λ)

∂t2
+

μ

t

∂ŵ(t, λ)

∂t
= −λ2 ŵ(t, λ), t > 0, (14)

ŵ(0, λ) = 0,
∂2m+1ŵ(0, λ)

∂t2m+1
= 0. (15)

The general solution to the equation (14) has the form

ŵ(t, λ) = t−ν (d1(λ) Jν(λt) + d2(λ)Nν(λt)) ,

where ν = μ/2− 1/2, Jν(·) is the Bessel function, Nν(·) is the Neumann function.
Taking into account the behavior of the Bessel and Neumann functions at zero, from the first

condition in (15) we obtain d1(λ) = 0. The order at zero with respect to t of the second term of the
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function ŵ(t, λ) is equal to −2ν = 1− μ and since 1− μ− (2m+ 1) = −2m− μ ≤ 0, then from the
second condition in (15) it follows d2(λ) = 0. Therefore, ŵ(t, λ) = w(t, y) = 0 for any y ≥ 0. Due to the
arbitrariness of the functional f ∈ E∗ for y = 0, we obtain the equality u1(t) ≡ u2(t), and the uniqueness
of the solution to the problem (3), (10) installed. The theorem has been proven.

In what follows, we will repeatedly use the formula connecting the operator functions Yμ(t) and
Y2+μ(t) for μ < 0, μ 	= 1− 2N , N ∈ N, which has the form

Yμ(t)u0 = Y2+μ(t)u0 +
t

1 + μ
Y ′
2+μ(t)u0, u0 ∈ D

(
Al/2+2

)
. (16)

For −1 < μ < 0 the equality (16) follows from the representation (5). In general direct verification
shows that the functions on the left and right sides of the equality (16) are solutions to the same Cauchy
problem (3), (10). By virtue of Theorem 4, they must coincide.

Note again that the case μ = 1− 2N , N ∈ N in Theorem 4 has not yet been studied and will be
considered further.

Example 1. For −1 < μ < 0, A ∈ Gk, 0 ≤ k ≤ 2 + μ and u0 ∈ D
(
A3

)
. Let’s consider the EPD

equation (3). In this case, under the conditions of Theorem 1 we have l = 1, q = 2 + μ ≥ k and using
the formula (5), we define the function

Yμ(t)u0 = Y2+μ(t)u0 +
t

1 + μ
Y ′
2+μ(t)u0.

By Theorem 4, the function u(t) = Yμ(t)u0 is the only solution to the equation (3), satisfying
conditions

u(0) = u0, u′′′(0) = 0, (17)

which is easy to verify directly by calculating the derivatives of this function up to the third order:

u′(t) = Y ′
μ(t)u0 =

t

1 + μ
AY2+μ(t)u0, u′′(t) = Y ′′

μ (t)u0 =
1

1 + μ

(
Y2+μ(t)Au0 + tY ′

2+μ(t)Au0
)
,

u′′′(t) = Y ′′′
μ (t)u0 =

1

1 + μ

(
−μY ′

2+μ(t)Au0 + tY2+μ(t)A
2u0

)
.

In particular, if A ∈ C is an operator of multiplication by a number, then

Y0(t) = C(t) = ch
(
t
√
A

)
, Y2+μ(t) = Γ(3/2 + μ/2)

(
2

t
√
A

)1/2+μ/2

I1/2+μ/2

(
t
√
A

)
,

u(t) = Yμ(t)u0 = Γ(3/2 + μ/2)

(
2

t
√
A

)1/2+μ/2
(
I1/2+μ/2

(
t
√
A

)
+

t
√
A

1 + μ
I3/2+ mu/2

(
t
√
A

))
u0,

where Iν(·) is the modified Bessel function.
Example 2. Let, in contrast to example 1, −2 ≤ μ < −1 and, as before, A ∈ Gk, 0 ≤ k ≤ 2 + μ,

u0 ∈ D
(
A2

)
. Then, under the conditions of Theorem 1, we have l = 1, q = 2 + μ ≥ k and defined by

the equality (16) function u(t) = Yμ(t)u0 is still the only solution to the problem (3), (17).
It should be noted that as μ decreases, the range of possible values for the parameter k narrows. For

example, if μ = −2, then only the case k = 0, A ∈ G0 is suitable, and then

u(t) = Y−2(t)u0 = C(t)u0 − tC ′(t)u0.

In particular, if

E = Lp, p > 1, A =
d2

dy2
, Y0(t)u0(y) = C(t)u0(y) =

1

2
(u0(y + t) + u0(y − t)) ,

then, using the formula (16), we define the function

u(t, y) =
1

2
(u0(y + t) + u0(y − t))− t

2

(
u′0(y + t)− u′0(y − t)

)
,
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which is the only solution to the problem

∂2u(t, y)

∂t2
− 2

t

∂u(t, y)

∂t
=

∂2u(t, y)

∂y2
, u(0, y) = u0(y),

∂3u(0, y)

∂t3
= 0.

Example 3. Let −3 < μ < −2, A ∈ Gk, 0 ≤ k ≤ 4 + μ and u0 ∈ D
(
A5

)
. In this case, under the

conditions of Theorem 1 we have l = 2, q = 4+ μ ≥ k and, using the formula (5), we determine function

Yμ(t)u0 = Y4+μ(t)u0 +
t2

(1 + μ)(3 + μ)
Y4+μ(t)Au0 +

t

3 + μ
Y ′
4+μ(t)u0, (18)

where for 0 ≤ k < 4 + μ the function Y4+μ(t)u0 is expressed in terms of Yk(t)u0 using the shift formula
solutions by parameter (2).

By Theorem 4, the function u(t) = Yμ(t)u0 is the only solution to the equation (3), satisfying
conditions

u(0) = u0, u(5)(0) = 0. (19)

Example 4. Let, in contrast to example 3, −4 ≤ μ < −3 and, as before, A ∈ Gk, 0 ≤ k ≤ 4 + μ,
u0 ∈ D

(
A5

)
. Then, under the conditions of Theorem 1, we have l = 2, q = 4 + μ ≥ k and defined by

the equality (18) the function u(t) = Yμ(t)u0 is still the only solution to the problem (3), (19).
Example 5. Let μ = −6, A ∈ C, u0 ∈ C. In this case, under the conditions of Theorem 1 we have

l = 3, q = 0 and, using the formula (5), we determine function

u(t) = Y−6(t)u0 =

(
cosh

(
t
√
A

)
+

2

5
At2 cosh

(
t
√
A

)
−At sinh

(
t
√
A

)
+

1

15
A3/2t3 sinh

(
t
√
A

))
u0,

which is the only solution to the problem

u′′(t)− 6

t
u′(t) = Au(t), u(0) = u0, u(7)(0) = 0.

Returning to the exceptional case μ = 1− 2N , N ∈ N, we point out that the problem (3), (10) is
incorrect, since the second derivative of the function Yμ(t)u0 at t = 0 is not defined, as can be seen from
the following example.

Example 6. Let μ = −1, A ∈ G0 and u0 ∈ D
(
A3

)
. In this case, under the conditions of Theorem 3

we have N = 1 and, using the formula (7), we define the function

Y−1(t)u0 = tZ ′
1(t)u0,

where the function Z1(t)u0 is given by the equality (6). Calculating the derivatives, we get

Y ′
−1(t)u0 = tZ1(t)Au0, Y ′′

−1(t)u0 = Z1(t)Au0 + tZ ′
1(t)Au0.

and, as follows from (6), the term Z1(t)Au0 has a logarithmic singularity at t = 0.
In addition to the previously indicated initial problem (3), (8) of a special form, for μ < 0 in [15], a

criterion for the uniform correctness of the following weighted initial problem was obtained

u′′(t) +
μ

t
u′(t) = Au(t), u(0) = 0, lim

t→0
tμu′(t) = u1, (20)

which we will present below.
Theorem 5. Let μ < 0 and u1 ∈ D(A). In order for the problem (20) to be uniformly correct, it

is necessary and sufficient that A ∈ G2−μ, and the only solution to this problem has the form

u(t) =
t1−μ

1− μ
Y2−μ(t)u1,

where Y2−μ(t)—OFB, the generator of which is the operator A.
Note 1. The second initial condition in the problem (20) can have the form

lim
t→0

D−μ
0+u′(t) = u1,

where μ < 0, D−μ
0+ is the fractional derivative of Riemann–Liouville, and the correctness of the problem

will not be violated.
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2. CAUCHY PROBLEM FOR NEGATIVE VALUES OF THE EQUATION PARAMETER
FOR A FACTORED EQUATION EULER–POISSON–DARBOUX WITH TWO FACTORS

Let us apply Theorem 4 to the study of the Cauchy problem for the factorized Euler–Poisson–
Darboux equation of the form(

d2

dt2
+

μ

t

d

dt
−A

)(
u′′(t) +

μ

t
u′(t)−Au(t)

)
= 0, t > 0 (21)

for μ < 0 and A ∈ Gk, k ≥ 0.
Interest in factorized equations arose after publications [16, 17] . If μ < 0 and A = B2, where B is

a group generator, then a number of results on the representation of solutions to the equation (21) was
obtained in [18, 19], and issues of non-uniqueness were studied in [20]. We’ll consider equation (21)
with the operator A ∈ Gk of a more general form.

If μ ≥ 0, A ∈ Gμ, then questions of unique solvability of factored singular equations were previously
considered in [21].

Let’s denote

u′′(t) +
μ

t
u′(t)−Au(t) = v(t), (22)

and let the parameter μ belong either to the interval −2m+ 1 < μ < −2m+ 2, or the interval −2m ≤
μ < −2m+ 1, where m ∈ N.

Then, the equation (21) will be written in the form

v′′(t) +
μ

t
v′(t) = Av(t). (23)

According to Theorem 4, for the equation (23) the problem with the conditions is correct

v(0) = v0, v(2m+1)(0) = 0, (24)

and at the same time v(t) = Yμ(t)v0, and for the inhomogeneous equation (22) the problem with the
conditions is correct

u(0) = u0, u(2m+1)(0) = 0. (25)

Direct inspection shows that the function

ω(t) =
t2

2(μ + 1)
Yμ+2(t)v0

is a particular solution to the equation (22). Indeed, we find the derivatives

ω′(t) =
t

μ+ 1
Yμ+2(t)v0 +

t2

2(μ + 1)
Y ′
mu+2(t)v0,

ω′′(t) =
1

μ+ 1

(
Yμ+2(t) + 2tY ′

μ+2(t) +
t2

2
Y ′′
μ+2(t)

)
v0

=
1

μ+ 1

(
Yμ+2(t)v0 +

t2

2
Yμ+2(t)Av0 +

(
1− μ

2

)
tY ′

μ+2(t)v0

)
,

and, by virtue of equality (16), we will have

ω′′(t) +
μ

t
ω′(t)−Aω(t) = Yμ+2(t)v0 +

t

μ+ 1
Y ′
μ+2(t)v0 = Yμ(t)v0 = v(t),

which proves the assertion.
Consequently, the solution to the Cauchy problem for an inhomogeneous equation (22) has the form

u(t) = Yμ(t)u0 + ω(t) = Yμ(t)u0 +
t2

2(μ + 1)
Yμ+2(t)v0. (26)
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Taking into account the equality proved in [17]

dj

dtj

(
u′′(t) +

μ

t
u′(t)

)∣∣∣∣
t=0

=
μ+ 1

j + 1
u(j+2)(0), (27)

from the conditions (24) we get

v(0) = (μ+ 1)u′′(0)−Au(0) = v0, v(2m+1)(0) =
μ+ 1

2m+ 2
u(2m+3)(0)−Au(2m+1)(0) = 0. (28)

Choosing in (28) v0 = (μ+ 1)u2 −Au0, from (24), (25) we obtain the initial conditions in terms of
the function u(t), which have the form

u(0) = u0, u′′(0) = u2, u(2m+1)(0) = 0, u(2m+3)(0) = 0. (29)

Thus, by virtue of the established representation (26)
Theorem 6. Let the conditions of Theorem 4 be satisfied. If

u0 ∈ D
(
An(μ)+[m/2]+1

)
, u2 ∈ D

(
An(μ)+[m/2]

)
,

then the function

u(t) = Yμ(t)u0 +
t2

2
Yμ+2(t)

(
u2 −

1

μ+ 1
Au0

)
(30)

is the only solution to the factorized EPD equation (21), satisfying the conditions (29).

Remark 1. It is easy to verify that for μ ≥ 0 and A ∈ Gμ, defined equality (30) the function u(t) will
be the only solution to the equation (21), satisfying the conditions

u(0) = u0 ∈ D(A3), u′(0) = 0, u′′(0) = u2 ∈ D(A2), u′′′(0) = 0.

Example 7. Let in the problem (21) and (29)

E = Lp, p > 1, μ = −2, A =
d2

dy2
, Y0(t)u0(y) = C(t)u0(y) =

1

2
(u0(y + t) + u0(y − t)) ,

the function u0(y) has continuous derivatives up to the sixth order, and the function u0(y) has
continuous derivatives up to the fourth. Then (see Example 2),

Y−2(t)u0(y) =
1

2
(u0(y + t) + u0(y − t))− t

2

(
u′0(y + t)− u′0(y − t)

)
,

and according to the formula (30) the only solution to the problem (21), (29) for μ = −2 has the form

u(t) = Y−2(t)u0(y) +
t2

2
Y0(t) (u2(y) +Au0(y))

=
1

2
(u0(y + t) + u0(y − t))− t

2

(
u′0(y + t)− u′0(y − t)

)
+

t2

4

(
u2(y + t) + u2(y − t) + u′′0(y + t) + u′′0(y − t)

)
.

Example 8. If −2 ≤ μ < 0, μ 	= −1 and A ∈ C is the operator of multiplication by a number, then
(see Examples 1 and 2)

Yμ(t) = Γ(3/2 + μ/2)

(
2

t
√
A

)1/2+μ/2
(
I1/2+μ/2

(
t
√
A

)
+

t
√
A

1 + μ
I3/2+ mu/2

(
t
√
A

))
,

Y2+μ(t) = Γ(3/2 + μ/2)

(
2

t
√
A

)1/2+μ/2

I1/2+μ/2

(
t
√
A

)
,
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and according to the formula (30) the only solution to the problem (21) and (29) in this case has the form

u(t) = Yμ(t)u0 +
t2

2(μ+ 1)
Yμ+2(t) ((μ+ 1)u2 −Au0) .

In particular, for μ = −2, using the formula (16), we obtain

u(t) = Y−2(t)u0 +
t2

2
Y0(t)(Au0 + u2) = Y0(t)u0 − tY ′

0(t)u0 +
t2

2
Y0(t)(Au0 + u2)

=

(
u0 +

t2

2
Au0 +

t2

2
u2

)
cosh

(
t
√
A

)
− t

√
A sinh

(
t
√
A

)
u0.

3. CAUCHY PROBLEM FOR NEGATIVE PARAMETER VALUES FOR A FACTORED
EQUATION EULER–POISSON–DARBOUX WITH THREE FACTORS

Next, we apply Theorems 4 and 6 to the study of the Cauchy problem for the factorized Euler–
Poisson–Darboux equation with three factors(

d2

dt2
+

μ

t

d

dt
−A

)(
d2

dt2
+

μ

t

d

dt
−A

)(
u′′(t) +

μ

t
u′(t)−Au(t)

)
= 0, t > 0 (31)

for μ < 0 and A ∈ Gk, k ≥ 0.
Let’s denote (

u′′(t) +
μ

t
u′(t)−Au(t)

)
= w(t), (32)

and let, as before, the parameter μ belong either to the interval −2m+ 1 < μ < −2m+ 2, or the interval
−2m ≤ μ < −2m+ 1, where m ∈ N. Then, the equation (31) will be written in the form(

d2

dt2
+

μ

t

d

dt
−A

) (
w′′(t) +

μ

t
w′(t)−Aw(t)

)
= 0. (33)

According to Theorem 6, for a homogeneous equation (33) of fourth order the Cauchy problem with
the conditions is correct

w(0) = w0, w′′(0) = w2, w(2m+1)(0) = w(2m+3)(0) = 0, (34)

and wherein

w(t) = Yμ(t)w0 +
t2

2(μ + 1)
Yμ+2(t) ((μ + 1)w2 −Aw0)

= Yμ+2(t)w0 +
t

μ+ 1
Y ′
μ+2(t)w0 +

t2

2(μ + 1)
Yμ+2(t) ((μ + 1)w2 −Aw0) .

By virtue of Theorem 4, for a second-order inhomogeneous equation (32) the Cauchy problem with
the conditions is correct

u(0) = u0, u(2m+1)(0) = 0. (35)

To solve the Cauchy problem (32) and (35) for an inhomogeneous equation, we select a particular
solution ω̃(t) of the equation (32) in the form

ω̃(t) = ϕ(t)Yμ+2(t)v1 + ψ(t)Y ′
μ+2(t)v2, (36)

where the scalar functions ϕ(t), ψ(t) and v1, v2 ∈ E are subject to selection.
Note that in the proof of Theorem 6 the function ω(t), was defined similarly and ψ(t) ≡ 0 was chosen.
Let us substitute the function ω̃(t) into the left side of the equation (32) and into the equality obtained

after this we equate the elements, containing Yμ+2(t) and Y ′
μ+2(t) on the left and right sides, respectively.

As a result, we obtain the following two equations(
ϕ′′(t) +

μ

t
ϕ′(t)

)
v1 +

(
2ψ′(t)− 2

t
ψ(t)

)
Av2 = w0 +

t2

2(μ+ 1)
((μ+ 1)w2 −Aw0) , (37)
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2ϕ′(t)− 2

t
ϕ(t)

)
v1 +

(
ψ′′(t)− μ+ 4

t
ψ′(t) +

3μ+ 6

t2
ψ(t)

)
v2 =

t

μ+ 1
w0. (38)

Since the right-hand sides of the equations (37) and (38) are polynomials in t, then the functions ϕ(t)
and ψ(t) should also be sought in the form of polynomials of the form

ϕ(t) = α1t
4 + β1t

2 + γ1, ψ(t) = α2t
3 + β2t

2 + γ2t, (39)

substituting which into the equations (37) and (38), we obtain

α1 = γ1 = β2 = γ2 = 0, (40)

α2Av2 =
(μ + 1)w2 −Aw0

8(μ + 1)
, (41)

β1v1 =
w0

2(μ + 1)
. (42)

If we require the existence of the operator A−1, then, taking into account the equalities (36) and
(39)–(42), we define a particular solution ω̃(t) inhomogeneous equation (32) in the form

ω̃(t) =
t2

2(μ + 1)
Yμ+2(t)w0 +

t3

8(μ + 1)
Y ′
μ+2(t)

(
(μ+ 1)A−1w2 − w0

)
.

Therefore, by Theorem 4, the solution to the Cauchy problem for an inhomogeneous equation (32) has
the form

u(t) = Yμ(t)u0 + ω̃(t)

= Yμ(t)u0 +
t2

2(μ + 1)
Yμ+2(t)w0 +

t3

8(μ + 1)
Y ′
μ+2(t)

(
(μ+ 1)A−1w2 − w0

)
. (43)

Given equality (27) and choosing in (43)

w0 = (μ+ 1)u2 −Au0, w2 =
μ+ 1

3
u4 −Au2,

we write the initial conditions (34) in terms of the solution u(t), which together with (35) leads to the
conditions

u(0) = u0, u′′(0) = u2, u(4)(0) = u4, u(2m+1)(0) = u(2m+3)(0) = u(2m+5)(0) = 0. (44)

Thus, it is fair

Theorem 7. Let the conditions of Theorem 4 be satisfied. If A−1 exists and

u0 ∈ D
(
An(μ)+[m/2]+2

)
, u2 ∈ D

(
An(μ)+[m/2]+1

)
, u4 ∈ D

(
An(μ)+[m/2]

)
,

then the function

u(t) = Yμ(t)u0 +
t2

2
Yμ+2(t)

(
u2 −

1

μ+ 1
Au0

)
+

t3

8
Y ′
μ+2(t)

(
1

μ+ 1
Au0 − 2u2 +

μ+ 1

3
A−1u4

)

is the only solution to the factorized EPD equation (31), satisfying the conditions (44).

Remark 2. If in the conditions (44) u4 = 0, then in Theorem 7 the existence no inverse operator A−1

is required.
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Remark 3. It is easy to verify that for μ ≥ 0 and A ∈ Gμ, defined equality (43) the function u(t) will
be the only solution to the equation (31), satisfying the conditions

u(0) = u0 ∈ D(A4), u′(0) = 0, u′′(0) = u2 ∈ D(A3), u′′′(0) = 0, u(4)(0) = u4 ∈ D(A2), u(5)(0) = 0.

Example 9. If μ = −2 and A ∈ C is an operator of multiplication by the number A 	= 0, then, using
the results of Example 8, by Theorem 7 we will find a solution to the problem (31), (44), which has the
form

u(t) =

(
u0 +

t2

2
Au0 +

t2

2
u2

)
cosh

(
t
√
A

)

−
(
t
√
Au0 +

t3

8

(
A3/2u0 + 2

√
Au2 +

1

3
√
A
u4

))
sinh

(
t
√
A

)
.
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