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Abstract: Sodium-glucose cotransporter 2 inhibitors are a relatively new class of glucose-lowering agents with significant 
advantages over other groups due to their good safety profile and protective effects on the cardiovascular system and kidneys. 
Today, the question of their ability to prevent and reduce the severity of acute kidney injury remains relevant. The primary 
objective of the study is to investigate the Potential of Sodium-Glucose Cotransporter Inhibitors as Agents for the Prevention of 
Ischemic and Reperfusion Kidney Injury. To gratify that objective, the experiment was performed on 80 Wistar line male rats. 
Acute kidney injury was simulated by reproducing a bilateral 40-minute renal ischemia-reperfusion. sodium-glucose cotransporter 
inhibitors were administered before surgery: dapagliflozin at doses of 0.5 mg/kg and 1 mg/kg, canagliflozin - 8.6 mg/kg and 25.7 
mg/kg, empagliflozin - 1 mg/kg and 2 mg/kg. The renoprotective effects were evaluated after 72 hours based on the following 
parameters: serum creatinine and urea concentrations, glomerular filtration rate and fractional sodium excretion, as well as the 
level of renal microcirculation. Based on the results acquired, Preliminary administration of dapagliflozin, canagliflozin and 
empagliflozin led to a statistically significant decrease in the level of serum creatinine concentration and fractional sodium excretion, 
as well as an increase in the glomerular filtration rate, compared with the control group. The results demonstrated their dose-
dependent effect and ability to improve the parameters of renal microcirculation. Plus, the results of the study demonstrate a high 
dose-dependent renoprotective potential of sodium-glucose cotransporter 2 inhibitors (dapagliflozin, canagliflozin and 
empagliflozin) on a model of bilateral renal ischemia-reperfusion. The results of this study can greatly contribute to the respective 
field.  
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1. INTRODUCTION 
 
According to the KDIGO guidelines, acute kidney injury (AKI) 
is defined as: an increase in serum creatinine concentration of 
≥ 0.3 mg/dL (≥ 26.5 μmol/L) within 48 hours; or an increase 
in serum creatinine concentration of ≥ 1.5 times the baseline 
level (if known or suspected to have occurred during the 
previous 7 days); or urine volume <0.5 ml/kg/hour in 6 hours 
1. Epidemiological studies demonstrate that acute kidney injury 
is a multifactorial syndrome and occurs in about 15% of 
hospitalized patients, reaching 43% after cardiothoracic 
surgery 2, 3. Thus, more than 13 million people worldwide are 
diagnosed annually with an episode of AKI 2. It is assumed that 
there is also a significant part of patients with unregistered AKI 
due to the complexities of the diagnostic process and the lack 
of uniform criteria for making a diagnosis 4. Incomplete or 
maladaptive recovery of kidney structures after an episode of 
acute kidney injury can lead to fibrosis of the renal structures, 
loss of renal cells and glomeruli, and the formation of 
pathological signaling pathways that contribute to the 
development and progression of chronic kidney disease 5, 6. 
Ischemia is one of the universal damage factors affecting 
various organs and tissues 7-13. The second most common 
pathogenetic variant of AKI is ischemic and reperfusion injury 
14. In this regard, pharmacological agents with cytoprotective 
7, 15, 16, endothelioprotective 17, 18 and anti-inflammatory 
properties 19 can become potential renoprotectors. 
Undoubtedly renoprotective properties of the sodium-glucose 
cotransporter 2 (SGLT-2) inhibitors are not in doubt 20-22, 
which creates advantages over other classes of glucose-
lowering agent due to a reduced risk of drug interactions 23, 24. 
However, their protective effects in acute kidney injury are 
not sufficiently studied: little experimental data have been 
obtained, and clinical studies demonstrate heterogeneous data 
on the ability of various SGLT-2 inhibitors to prevent the 
development of AKI 25-28. Overall, as stated above, since 
Sodium-glucose cotransporter 2 inhibitors are a somewhat 
new class of glucose-lowering agents with substantial 
advantages over other groups owing to their desirable safety 
profile and protective impacts on the cardiovascular system 
and kidneys, this study was conducted to analyze the 
renoprotective properties of sodium-glucose cotransporter 2 
inhibitors in modeling bilateral renal ischemia-reperfusion. 
 
2. MATERIALS AND METHODS 
 
The experiment was performed on 80 sexually mature male 
Wistar rats weighing 200-250 g, in compliance with ethical 
norms and principles “European Convention for the 
Protection of Vertebral Animals Used for Experimental and 
Other Scientific Purposes. CETS No. 123”.  
The animals were randomized into the following groups 
(n=10):  
Group 1. Intact. 
Group 2. Control group (modeling of renal ischemia-
reperfusion). 
Group 3. Dapagliflozin at a dose of 0.5 mg/kg + modeling of 
renal ischemia-reperfusion. 
Group 4. Dapagliflozin at a dose of 1 mg/kg + modeling of renal 
ischemia-reperfusion. 
Group 5. Canagliflozin at a dose of 8.6 mg/kg + modeling of 
renal ischemia-reperfusion. 
Group 6. Canagliflozin at a dose of 25.7 mg/kg + modeling of 
renal ischemia-reperfusion. 
Group 7. Empagliflozin at a dose of 1 mg/kg + modeling of 
renal ischemia-reperfusion. 

Group 8. Empagliflozin at a dose of 2 mg/kg + modeling of 
renal ischemia-reperfusion. 
 
2.1 Animals and Experimental Record 
 
Modeling of renal ischemia-reperfusion was performed under 
anesthesia using chloral hydrate at a dose of 300 mg/kg 
according to the generally accepted method 18, 29, 30. The 
animals were placed in metabolic cages in 48 hours after 
removing the clamps, and urine was collected for 24 hours. 
After that, the microcirculation parameters were recorded, 
samples were taken for the subsequent study of the 
concentration of creatinine and sodium in the blood serum 
and urine, as well as the serum urea concentration. 
 
2.2 Pharmacological Agents 
 
Dapagliflozin was administered at doses of 0.5 mg/kg or 1 
mg/kg 120 minutes before applying clamps to the renal 
pedicles; canagliflozin - at doses of 8.6 mg/kg or 25.7 mg/kg 90 
minutes before applying clamps; empagliflozin - at doses of 1 
mg/kg or 2 mg/kg 90 minutes before applying clamps. These 
pharmacological agents were administered intragastrically. The 
doses used are calculated taking into account the interspecies 
dose coefficients, the mode of administration is based on the 
pharmacokinetic properties of the agents. 
 
2.3 Evaluation of The Functional State of the Kidneys 
 
The glomerular filtration rate was calculated as follows, based 
on the clearance of endogenous creatinine, according to the 
formula (ml/min): 
 
 
 
 
* - Cr (urea) - urine creatinine concentration (μmol/L); V (urea) 
- urine volume (ml); Cr (serum) - serum creatinine 
concentration (μmol/L); t - time (min). 
 
2.4 Fractional Sodium Excretion Was Calculated Using 

the Following Formula (%) 
 
 
 
 
* - Na+ (urea) - urine sodium concentration; Cr (serum) — 
serum creatinine concentration (μmol/L); Na+ (serum) - serum 
sodium concentration; Cr (urea) - urine creatinine 
concentration (μmol/L);  
 
3. STATISTICAL ANALYSIS 
 
The obtained data were checked for the normality of 
distribution using the Shapiro-Wilk test. In the case of a 
normal distribution, data were presented as average value (M) 
and standard error of the mean (m). Intergroup differences 
were analyzed using the Student's t-test; p <0.05 indicated a 
statistically significant difference. Determination of serum 
concentration of creatinine, urea, sodium, as well as 
concentrations of sodium and creatinine in urine was 
performed using an automatic biochemical analyzer AU480. 
Microcirculation parameters were evaluated using the MP100 
hardware complex (Biopac System, Inc., USA) and the 
AcqKnowledge software. The measurement was performed 
using a TSD143 surface sensor applied to the middle third of 

𝐺𝐹𝑅 = 𝐶𝑟(𝑢𝑟𝑒𝑎) × 𝑉(𝑢𝑟𝑒𝑎)𝐶𝑟(𝑠𝑒𝑟𝑢𝑚) × 𝑡  (∗) 

 

𝐹𝑒𝑁𝑎 =  𝑁𝑎+ (𝑢𝑟𝑒𝑎) × 𝐶𝑟(𝑠𝑒𝑟𝑢𝑚)𝑁𝑎+(𝑠𝑒𝑟𝑢𝑚) × 𝐶𝑟(𝑢𝑟𝑒𝑎)  (∗∗) 
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the kidney. Results are presented in perfusion units. 
Furthermore, the ethical committee of Belgorod State 
University approved this study and declared that there is no 
ethical issues.  
 
4. RESULTS  
 

Modeling of bilateral renal ischemia-reperfusion led to a 
predictable increase in serum creatinine concentration up to 
131.7±6.7 μmol/L, urea up to 9.15±0.25 μmol/L. The 
glomerular filtration rate, respectively, decreased to 0.05±0.01 
ml/min and the fractional sodium excretion increased to 
8.05±0.85%.

 
 

Note: x – p<0.05 compared to intact; y – p<0.05 compared to ischemia-reperfusion model; * – p<0.05. 

 
Fig 1: The effect of pre-administration of sodium-glucose cotransporter inhibitors on serum creatinine 

concentration in modeling renal ischemia-reperfusion. 
 
Based on Figure 1, preliminary administration of dapagliflozin 
led to a dose-dependent realization of its renoprotective 
properties. This was confirmed by a decrease in creatinine 
concentration to 71.7±3.5 μmol/L, a significant increase in GFR 

to 0.35±0.03 ml/min, and a decrease in fractional sodium 
excretion to 1.9±0.26% when using a dose of 1 mg/kg. All 
these parameters significantly differed from those of intact 
animals and the ischemia-reperfusion group (p <0.05).

 
 

 
 

Note: x – p<0.05 compared to intact; y – p<0.05 compared to ischemia-reperfusion model; * – p<0.05. 

 
Fig 2: The effect of pre-administration of sodium-glucose cotransporter inhibitors on glomerular filtration rate 

in modeling renal ischemia-reperfusion. 
 
 
Considering Figure 2, a similar dynamic was observed with the 
preliminary administration of canagliflozin and empagliflozin. 
Thus, the level of glomerular filtration rate and fractional 
sodium excretion during pharmacological correction with 

canagliflozin at a dose of 25.7 mg/kg was 0.36±0.03 ml/min and 
1.67±0.2%, respectively, and with empagliflozin at a dose of 2 
mg/kg was 0.32±0.02 ml/min and 1.53±0.14%.  
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Note: x – p<0.05 compared to intact; y – p<0.05 compared to ischemia-reperfusion model; * – p<0.05. 

 
Fig 3: The effect of pre-administration of sodium-glucose cotransporter inhibitors on serum urea concentration 

in modeling renal ischemia-reperfusion. 
 
Observing Figure 3, the dynamics of serum creatinine 
concentration upon preliminary administration of canagliflozin 
at a dose of 25.7 mg/kg and empagliflozin at a dose of 2 mg/kg 
also confirmed the hypothesis of their protective effects in 

renal ischemia-reperfusion, decreasing to 72.9±4.1 μmol/L and 
70.9±3.1 μmol/L respectively (p <0.05 in comparison with the 
parameters of intact animals and the control group).

 
 

 
 

Note: x – p<0.05 compared to intact; y – p<0.05 compared to ischemia-reperfusion model; * – p<0.05. 

 
Fig 4: The effect of pre-administration of sodium-glucose cotransporter inhibitors on fractional sodium 

excretion in modeling renal ischemia-reperfusion. 
 
 

Table 1. The effect of pre-administration of sodium-glucose cotransporter inhibitors on renal 
microcirculation level in modeling renal ischemia-reperfusion (M±m, PU). 

Experimental group (n=10) Microcirculation level 

Intact 913,8±70.9 

Ischemia-reperfusion model 345.1±26.7х 

Dapagliflosine correction, 0.5 mg/kg 493.2±45.8х,у 

Dapagliflosine correction, 1 mg/kg 656.1± 32.6х,у 

Canagliflosine correction, 8.6 mg/kg 530.4±63.1х,у 

Canagliflosine correction, 27.5 mg/kg 700.4±43.3х,у 

Empagliflosine correction, 1 mg/kg 486.6±64.9х,у 

Empagliflosine correction, 2 mg/kg 676±57.1х,у 

 
Note: x – p<0.05 compared to intact; y – p<0.05 compared to ischemia-reperfusion model; * – p<0.05. 
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Table 1 illustrates the effect of pre-administration of sodium-
glucose cotransporter inhibitors on renal microcirculation 
level in modeling renal ischemia-reperfusion (M±m, PU). And 
Figure 4 depicts the effect of pre-administration of sodium-
glucose cotransporter inhibitors on fractional sodium 
excretion in modeling renal ischemia-reperfusion. Given 
Figure 4 and table 1, the microcirculation parameters in the 
control group decreased by more than 2.5 times reaching 
345.1±26.7 PU in 72 hours after removing the clamps from the 
renal pedicles. Preliminary administration of dapagliflozin at a 
dose of 1 mg/kg, canagliflozin at a dose of 25.7 mg/kg, and 
empagliflozin at a dose of 2 mg/kg led to a significant 
improvement in the state of the microvasculature in the 
kidneys: parameters increased to 656.1±32.6 PU, 700.4±43.3 
PU, and 676±57.1 PE, respectively. The use of lower doses 
also had protective effects, but their severity was significantly 
lower. 
 
5. DISCUSSION 
 
For a long time, ischemic injury was the main cause of AKI 31. 
Unfortunately, despite the increase in the pool of therapeutic 
options and a sufficient amount of experimental data, there is 
currently no highly effective therapy for the prevention and 
treatment of AKI 32. Therefore, the search for pharmacological 
agents capable of preventing the development and reducing 
the severity of ischemic and reperfusion injuries in various 
tissues and organs, including the kidneys, is undoubtedly one 
of the most important tasks of pharmacology. The renal 
ischemia-reperfusion model is one of the most common 
experimental models of acute kidney injury, as it allows 
simulating various clinical situations, including kidney damage 
during transplantation, organ-preserving kidney surgery and 
cardiac surgery. Modeling of bilateral renal ischemia followed 
by reperfusion for 72 hours was characterized by the 
registration of changes comparable to the results of other 
authors: an increase in serum creatinine and urea 
concentrations, a decrease in GFR, and an increase in 
fractional sodium excretion 18, 29, 30. Sodium-glucose 
cotransporter inhibitors have demonstrated their 
renoprotective properties in patients with diabetes mellitus 
and/or chronic kidney disease 33, as well as in modeling these 
conditions in laboratory animals 34,35. One of the key 
mechanisms for the realization of their protective effects, 
researchers call the activation of the reverse tubulo-
glomerular connection, which leads to a decrease in 
hyperfiltration, one of the key pathogenetic links of kidney 
injury in diabetes mellitus, chronic kidney disease, and arterial 
hypertension 17, 28. On the contrary, tubuloglomerular 
feedback is one of the components damaging kidney tissue in 
ischemic and reperfusion injuries, as it leads to glomerular 
vasospasm, which makes a significant contribution to the 
decrease in GFR in AKI 29. In this regard, it was suggested that 
SGLT-2 inhibitors may increase the risk of developing AKI, 
which has been demonstrated in some studies 28. However, 
subsequent systematic reviews and meta-analyses, on the 
contrary, confirmed the hypothesis of reducing the risks of 
AKI in patients taking SGLT-2 inhibitors 25, 26. Information on 
the protective effects of SGLT-2 inhibitors was obtained in 

experimental modeling of ischemic and reperfusion injuries of 
various organs. Administered before ischemia dapagliflozin at 
a dose of 1 mg/kg provided cardioprotection: the frequency of 
arrhythmias, the size of the infarction, mitochondrial 
dysfunction decreased, and the function of the left ventricle 
improved 20. Empagliflozin at a dose of 10 mg/kg reduced the 
amount of brain tissue damage in rats along with suppression 
of cerebral oxidative stress, a decrease in inflammatory and 
apoptotic markers in the brain tissues of rats with 
hyperglycemia, and modeling of bilateral occlusion of the 
common carotid artery for 30 minutes, followed by 24-hour 
reperfusion 11. A single intravenous bolus of canagliflozin in 5 
minutes after the start of ligation of the carotid artery branch 
significantly reduced the size of myocardial infarction, as well 
as the levels of troponin-T in the blood serum, and also 
restored the systolic and diastolic function of the left ventricle 
and preserved its mechanoenergetics 17,19. 
 
6. CONCLUSION 
 
In conclusion, considering the importance of Sodium-glucose 
cotransporter 2 inhibitors, this study intended to analyze the 
renoprotective properties of sodium-glucose cotransporter 2 
inhibitors in modeling bilateral renal ischemia-reperfusion. To 
that end, the experiment was performed on 80 Wistar line 
male rats. The results of this experiment demonstrate the 
protective effects of representatives of this group of 
pharmacological agents, dapagliflozin, canagliflozin, 
empagliflozin, which are most clearly manifested when using 
higher doses: 1 mg/kg, 25.7 mg/kg and 2 mg/kg, respectively. 
These conclusions were obtained based on the serum 
creatinine and urea concentrations, glomerular filtration rate 
and fractional sodium excretion, which statistically significantly 
differed from those of the control group (p<0.05). The 
positive effect of SGLT-2 inhibitors on the parameters of 
microcirculation in the renal tissue has also been 
demonstrated. The results of the study demonstrate a high 
dose-dependent renoprotective potential of pre-
administration of sodium-glucose cotransporter 2 inhibitors 
(dapagliflozin, canagliflozin and empagliflozin) in modeling 
bilateral renal ischemia-reperfusion. This was evidenced by a 
decrease in serum creatinine and urea concentrations, an 
increase in GFR, a decrease in fractional sodium excretion, and 
an increase in microcirculation in kidney tissue. Regarding 
future studies, it can be recommended that mechanistic 
studies shall elucidate the potential relation between the 
infarct size-lowering impact of SGLT2 inhibitors and the intact 
organ system. 
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