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The qu an tiza tion  o f  th e  tran sverse  m o tion  en e rg y  in th e  con tinuous p o ten tia ls  o f  a tom ic  strings and 

planes can take p lace  u nd er passage o f  fast ch arged  partic les  th rou gh  crystals. T h e  e n e rg y  leve ls  fo r  e le c ­

tron  m o v in g  in  ax ia l ch an n e lin g  re g im e  in a sys tem  o f  p a ra lle l a tom ic  strings ( fo r  instance, [1 1 0 ]  strings 

o f  a s ilicon  c rys ta l) a re  fou nd  in  th is w o rk  fo r  th e  e lec tron  e n e rg y  o f  o rd e r  o f  severa l tens o f  M eV , w h e n  a 

to ta l num ber o f  e n e rg y  leve ls  b ecom es  la rge  (u p  to  severa l h undreds). H igh  reso lu tion  o f  th e  spectra l 

m e th od  used  fo r  en e rg y  lev e l search  has b een  d em on stra ted . H en ce th is m eth od  cou ld  b e  usefu l for 

in ves tiga tion  o f  qu an tu m  chaos p rob lem .

©  2013 E lsev ier B.V. A ll rights reserved .

1. Introduction

The motion of a fast charged particle in a crystal near one of 
crystallographic axes or planes is determined mainly by the contin­
uous potential that is the potential of a crystal lattice averaged 
along the axis or plane, near which the motion takes place. The 
longitudinal component o f the particle’s momentum parallel 
to the crystallographic axis or plane is conserved in such field. 
So, the problem on the particle’s motion in a crystal is reduced to 
the two-dimensional problem of its motion in the transverse plane. 
The finite motion in the potential wells formed by the continuous 
potentials of atomic axes or planes is known as axial or planar 
channeling, respectively (see [1-7] and references therein).

The electron motion under axial channeling described by 
classical equation of motion can be both regular and chaotic. A 
pronounced example of chaotic behavior is axial channeling in a 
continuous potential created by two neighboring atomic strings 
[110] o f diamond-like crystal [3,4].

On the other side, the quantum effects can manifest themselves 
during channeling. Particularly, the quantization o f the transverse 
motion energy can take place (see, e.g. [3, Ch. 7, Sec. 53], [5, Sec. II 
C]). Investigation of the chaotic behavior on quantum level needs 
statistical analysis of large massive o f energy levels (thousands 
or more) [8]. Many numerical methods for searching the transverse 
motion energy levels as well as other quantum characteristics of a 
particle motion in channeling regime had been developed in the 
pioneering papers on quantum approach to channeling phenome­
non (a good review o f them could be found in the book [6]).
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The most suitable for quantum chaos studies is the so-called 
spectral method of energy eigenvalues searching [9]; it was 
successfully used in investigation of chaotic phenomena in nuclear 
physics [8]. In the channeling theory the spectral method had been 
applied for the first time in [10-12] for the case of low electron 
energies, E ~  1 MeV, when the number o f energy levels in the 
potential well is small. In that series of papers the evolution of 
incident electron wave function during penetration into a crystal 
was investigated, positions and widths of transverse energy bands 
were found as well as momentum distribution of outgoing 
electrons, and comparison with experimental data had been 
made.

Note that use of periodic crystal potential in [10-12] automat­
ically leads to formation of band structure of the energy of trans­
verse motion. In the paper [13] high resolution of the spectral 
method was used to trace out how the energy levels in the poten­
tial well formed by a single atomic plane are split due to possibility 
o f tunneling between neighboring planes. For large number of such 
planes this leads to formation of the band structure.

The main goal o f present paper is demonstration of high resolu­
tion of the spectral method for the axial channeling case in the 
range of incident electron energies o f order of several tens of 
MeV, where the number of energy levels becomes large. To sim­
plify the problem, we consider an electron motion in the isolated 
two-well continuous potential formed by two [110] atomic strings 
of silicon crystal, neglecting the crystal periodicity.

2. Method

The spectral method of searching the energy eigenvalues o f the 
quantum system [9] is based on the computation o f correlation
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function for the time dependent wave functions of the system at 
the initial and current time momenta, ^Р(х,у,0) and t ) :

/OO POO

/ Ч'*(х,у,0)Ч'(х,у, t)dxdy.

■oo J  —OO

П )

Fourier transform of this correlation function,
POO

Pe =  P(t) exp(iEt/h)dt (2 )

contains information about the energy eigenvalues. Indeed, every 
solution of the time-dependent Schrodinger equation

t) =  t)

could be expressed as the superposition

T (x ,y ,t ) =  J2AnjUnj (x ,y )exp( - iEnt/h)

(3 )

(4 )

><
S '

of the Hamiltonian’s eigenfunctions unj(x,y),

Hunj(x,y) =  Enunj(x,y),

where the index j  is used to distinguish the degenerate states corre­
sponding to the energy Computation of the correlation function 
(1) for the wave function of the form (4) gives

POO POO

P(t)  =  J ]  exp (-iE„,t/h)A*nJAn,f  I I u*nJ(x,y)un,j(x,y)dxdy
a t  J -O O  J -O O

=  e x p ( - iE n 't/ h )A * njA n,j :5 nn,5M

n,n'jjr

nj

Fourier transformation of (5) leads to the expression

i2 ,
P E =  2nhJ2\Anj \ S ( E - E n).

(5)

(6)
nj

We see that the Fourier transformation of the correlation function 
looks like a series of (5-form peaks, positions of which indicate the 
energy eigenvalues.

So, the computation of the energy levels for the given system 
consists of the following steps:

1. Choosing the arbitrary initial wave function 4'(x,y, 0). The only 
conditions of the choice are:
(a) tendency to zero under x,y —> ±00, necessary for every 

bound state;
(b) wide spectrum that covers the depth of the potential well;
(c) absence of any symmetry which could lead to the lack of 

some eigenfunctions in the superposition (4) (see the dis­
cussion in Section 3).

Asymmetric Gaussian waveform would be a good choice for the 
most cases.

2. Numerical integration of the time-dependent Schrodinger 
equation (3) with the initial value 4'(x,y, 0) for the discrete ser­
ies o f the time momenta; the value of the time step At  as well as 
other computational details are discussed in [9,13].

3. Computation o f the integral (1) for every discrete time momen­
tum from t =  0 to some maximal t =  T. Subsequent integration 
of the obtained correlation function P(t)  with the exponent in 
(2) is carried out over the finite time interval:

Pe =  [  P(t)exp(iEt/h)dt. 
Jo

(7)

X ,

Fig. 1. Potential energy (10) o f an electron in the field o f continuous potentials o f 
tw o neighboring atomic strings [110 ] o f a silicon crystal.

As a result, we obtain a series of peaks of finite width (inverse
proportional to T) instead of infinitely narrow (5-form peaks (6).

Note that it is possible to find the energy eigenvalues by simple 
Fourier transformation o f the computed wave function (4) at the 
fixed point (x = y  =  0, for instance) as it was done in [12]. How­
ever, it is a risk to lose some eigenvalue if the particular eigenfunc­
tion u„j(x,y) is equal to zero in this point.

3. Results and discussion

The motion of the fast charged particle in a crystal under small 
angle ф to the crystallographic axis densely packed with atoms 
could be (with good accuracy) described as a motion in the contin­
uous string potential (e.g. the potential of the atomic string aver­
aged along its axis) [3,5]. The longitudinal (e.g. parallel to the 
string axis) component o f the particle’s momentum is conserved 
in such a field. The motion in the transverse plane will be described 
in this case by the two-dimensional analog o f Schrodinger equation 
[3, Ch. 7, Sec. 53]

ft"
2E||/c2

U(x,y) (8 )

where V 2 =  cP/dx2 +  cP/dy2 is the two-dimensional Laplasian 
operator, and the value Ец/с2 (where £ц =  (m2̂  + p jc2)1/2) plays 
the role of the particle’s mass.

The continuous string potential could be approximated by the 
formula [3, Ch. 6, Sec. 41]

иг (х,у) =  -[70ln 1
PR2

x2 + y 2 ocR‘
O)

where for the [110] string of silicon U0 =  60.0eV, 
a =  0.37, fl =  3.5, R =  0.194 A (Thomas-Fermi radius); the least 
distance between two parallel strings is a/4 =  5.431/4 A (where a 
is the lattice period). So, the continuous potential, in which the elec­
tron’s transverse motion takes place, will be described by “two- 
well” function Fig. 1

U(x,y) =  Ui(x,y +  a/8) +  Ui(x,y -  a/8) (10)
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Fig. 2. Fourier transformations o f  the correlation functions (7 ) computed for the set o f values o f Ец for an electron in the double potential w e ll (10). Positions o f the maxima 
indicate the eigenvalues o f transverse motion energy E± .

Fig. 3. Upper p lo t: Fourier transformation o f the correlation function (7 ) for the electron o f  energy Ey =  20 M eV  in the double potential w ell (10 ) as a function o f transverse 
motion energy E± ; vertical dashed line marks the saddle point level for the potential (10). L ow er p lo t: Fourier transformation o f the correlation function for the electron in the 
single w ell (9 ), shifted by the value -4 .11  eV, computed for the initial w ave function o f general form (solid curve) and for the axially symmetric initial w ave function (dotted

(neg lecting the influence o f  far-away strings). The finite m otion o f 

the electron in such potential (corresponding to negative values o f 
the transverse m otion energy E± ) is known as axial channeling [3].

To search the transverse m otion  energy levels in the potential 
(1 0 ) by spectral m ethod w e  have chosen the initial w ave  function 
o f  asym m etric Gaussian form:

1
7Z d x d y

exp
( X - X o ) 2 (y +  a/8 - y 0f

2a]

-exp
( x - x 0)2 ( y - a / 8 - y 0)2

2a]

where ax =  0.05 A, ay =  0.06 A, x0 =  a/35, y0 =  a/45 (high sym­
metry of the initial wave function could lead to the absence of some 
eigenfunctions in the superposition (4) and, as a consequence, to 
the loss of some energy levels, see the discussion below and the dot­
ted curve on the lower plot on Fig. 3).

Fourier transformations of the correlation functions for differ­
ent values of Ец are presented in Fig. 2. One can see that at the elec­
tron energy increase the transverse energy levels shift themselves 
deeply into the potential well, and the total number o f levels in the

well increases. This is the manifestation of general quantum 
mechanical connection between the particle mass (which role is 
played by the value Ец/с2 in our problem, as it was mentioned 
above) and the ground state energy as well as the total number 
of levels in the given potential well. The semiclassical estimation 
of the number o f levels for the channeled electron as a function 
of its £|| could be found in [3, Ch. 7, Sec. 53]. Some details of “suck- 
ing-up” of new levels into potential well from the continuum are 
investigated in [12].

Results o f computation of the transverse energy levels for the 
£|l =  20 MeV electron in double (10) and single (9) potential wells 
are presented in Fig. 3. The logarithm o f the absolute value of the 
Fourier transform of the correlation function (7) is plotted vs the 
E± value in the potential well. To simplify the comparison, the plots 
for both single and double wells are displayed as mirrors of each 
other, and the negative value Uj(0,a/4) ss -4.11 eV is added to 
the potential energy (9) to shift the bottom of a single well to 
the level of double one.

We see that in the range of E± below the saddle point o f the dou- 
ble-well potential the general arrangement of energy levels is simi­
lar to that for a single well. However, the splitting of some levels in 
double-well potential is observed. For deep levels the splitting is
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Fig. 4. The same as on Fig. 3, for the energy interval -3 2  <  <  -2 9  eV.

caused by the breaking o f axial symmetry for any potential well in 
the double-well case. As known, the quantum states in two-dimen- 
sional potential possessing axial symmetry are characterized by two 
quantum numbers: radial nr (that coincides with the number of zero 
points of the radial wave function except ones at the distances r =  0 
and r —> oo from the center of the field) and projection m of the orbi­
tal angular momentum to the field axis of symmetry (see, e.g., the 
Problem 4.7 in [14]). The states with m =  0 are non-degenerated, 
and the states with m Ф 0 are twice degenerated (positive and neg­
ative m correspond to the same energy). Fourier transformation of 
the correlation functions (7) for electron in a single axial symmetric 
potential well (9) is presented by the lower plot of Fig. 3. The solid 
curve is computed for the initial wave function of a general form, 
and the dotted curve is computed for axial symmetric wave function. 
Such special wave function contains only m =  0 eigenstates, hence 
the peaks on the dotted curve indicate only the positions of non­
degenerated energy levels. The comparison with the upper plot of 
Fig. 3 demonstrates that only levels with m Ф 0 are split.

Another mechanism of splitting is connected with the tunneling 
between two wells. The effect becomes visible for the levels close 
to the saddle point of the potential (10), where the potential bar­
rier becomes thin and easy penetrative (see Fig. 4).

4. Conclusion

The quantum mechanical problem on charged particle motion 
in oriented crystal under the axial channeling regime is considered. 
The spectral method of energy level search is applied to electron 
channeling in continuous potential of single [110] atomic string 
o f silicon crystal as well as for duplet of such strings. The method 
demonstrates good resolution in the case of electron energies of 
order o f several tens of MeV when the total number of energy 
levels increases up to several hundreds.

High resolution is necessary for investigation of statistical prop­
erties of large massive of energy levels; that properties could be

used to study the behavior of a quantum system, which classical 
analog allows the dynamical chaos (axial channeling in a two- 
string system, see [3, Ch. 6, Sec. 43]). The spectral method has 
demonstrated its effectiveness for the similar problem in nuclear 
physics [8].
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