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Abstract—In Banach space, we consider the problem of determining the solution and a summand
of a differential equation of iractional order irom the initial and redundant conditions containing
fractional Riemann—Liouville integrals. It is shown that the solvability of the problem under
consideration depends on the distribution of zeros of the Mittag—Lefiler function.

Key words: differential equation of fractional order, Riemann—Liouville integral, densely
defined linear operator, Mittag—Leffler function, Cesaro mean, Banach space.

Suppose that F is a Banach space and A is a linear, closed, densely defined operator in F with domain
of definition D(A) and with a nonempty resolvent set. Consider the problem of determining a function
u(t) € C1((0,1], E) belonging to D(A) for t € (0, 1] and an element p € E from the conditions

Du(t) = Au(t) +t*tp, (1)
P_I)I(l) I'=u(t) = ug, (2)
%E)r% IPu(t) = uy, (3)
where k£ > 0,
ERY A S L
Pull) = 1 /O (t — )7 u(s) ds

is the left-sided fractional Riemann—Liouville integral of order 3 > 0 (I? is the unit operator for 3 = 0),
I'(-) is the gamma function, and

Dou(t) = %Il_o‘u(t)

is the left-sided fractional Riemann—Liouville derivative of order o € (0, 1).

Definition. By a solution of problem (1)—(3) we mean the pair (u(t), p), where u(t) € D(A) is a
continuous (for ¢ > 0) function such that I'=®u(t) is continuously differentiable (for ¢ > 0) function,
p € F, and finally, u(t) and p satisfy (1)—(3).

Following the existing terminology, we call problem (1)—(3) an inverse problem in contrast to a
direct problem of Cauchy type (1), (2) with a known element p € E. The problem under consideration
can be regarded as the recovery of the nonstationary summand t*~'p in Eq. (1) with the help of the
additional boundary condition (3).

For a survey of works on inverse problems of the form (1)—(3) for a =1, § =0 and various
constraints on the operator A, see the monograph [1] as well as the papers [2]—[5]. As to the inverse
problem (1)—(3), it is considered here for the first time. In contrast to the inverse problems studied
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earlier, the additional condition (3) involves an integral of fractional order that can be regarded as the
Cesaro mean over the interval [0, 1]. In what follows, it will shown that, as far as the solvability of the
inverse problem is concerned, assigning the Cesaro mean over the interval [0, 1] is more advantageous
than assigning the final value u(1).

[t follows from [6], [7] that the assignment of relation (2) makes the initial-value problem for the
equation

D%u(t) = Au(t) + f(t), t >0, (4)

with « € (0, 1) and a sufficiently smooth function f(#), well posed. Conditions on the operator A and the
function f(¢) ensuring that problem (4) (2)is well-posed were given in [6]. These conditions in a Banach
space F possessing the Radon-Nikodima property (see [8, p. 15]), are stated in terms of the estimates
of the norm of the derivatives of the resolvent R(A*) = (A*T — A)~! (\® is the principal branch of the
power function), which exists at the point A* for Re A > w. These estimates are of the form

‘ d*R(\%) MT(n+ «)

" ‘ ~— (Re A —w)nte’
and constitute a necessary and sufficient condition for the uniform well-posedness of problem (4), (2).
Note that another approach to the derivation of conditions of uniform well-posedness involving a
regularization method for a contour integral was described in [9].

n=012..., (5)

In what follows, we shall need the following conditions.
Condition 1. The operator A is such that problem (4), (2) is uniformly well posed.

Condition 2. One of the following requirements is imposed:

(i) f(t) € C((0,00), E) is absolutely integrable at zero and assumes values in D(A), while Af(t)
C'((0,00), E) and is also absolutely integrable at zero;

(i) D*f(t) € C((0,00), E) and is absolutely integrable at zero.

In particular, if Condition 2 holds and the operator A is bounded, then Condition 1 also holds and the
solution of problem (4), (2) is of the form (see [7])

u(t) = to‘_ltha(to‘A)uo + /t(t — s)o‘_lana((t —s5)*A) f(s) ds, ug € I, (6)
0

where

EOé —= _—
u(z) ],ZO T(aj + )

is the Mittag—Lefiler function.

In the case of an unbounded operator A satisiying Condition 1, the solution of problem (4), (2) for
f(t) = 01is of the form (see [6])

1 o+ico
u(t) = To(t)ug = %Dl_o‘/ A LM RO Yug d, (7)

—100

where ug € D(A), 0 > max(0,w), while, in the general case (see[7]),

w(t) = To (Do + /O T — 5) f(s) ds.

here the function f(¢) must satisfy Condition 2.



Theorem 1. Suppose that Ais a linear bounded operatorin F and uo,u1 € E. For problem (1)—(3)
to have a unique solution, it is necessary and sufficient that the condition

Ea,k+a+ﬁ(z) 7é 07 z € O(A) (8)
hold on the spectrum o(A) of the operator A.

Proof. In view of (6), problem (1), (2) can be reduced to that of finding a function w(¢) and an element
p € E such that the following relation holds:

t
w(t) = 15 Ep o (t* Aug + / (t = )" B a((t — 5)*A)s*p ds. ()
0
Relation (9) and the boundary condition (3) imply the equation

¢
%irr% Iﬁ/ (t —8)* B, o((t — 5)*A)s* Ipds = uy — %IH% (17 B, o (1% A)ug),
— 0 —

which serves to determine the unknown element p, or, using the semigroup property of the operation
of fractional integration and calculating the iractional integrals, we obtain the following equation in
operator form:

Bop = qo, (10)
where
1
o = m(ul

Thus, a necessary and sufficient condition for the unique solvability of problem (1)—(3) with bounded
operator A and arbitrary values ug, u; € F is the solvability of Eq. (10) for any ¢ € F, i.e., the absence
of points A = 0 in the spectrum o (By) of the operator By.

[t follows from (11) that the operator By is an analytic function of the operator A. By the theorem on
the mapping of the spectrum of a bounded operator, we have

0(Bo) = 0(Eaktat+8(A)) = Eaktars(c(A)).

Therefore, the value of A = 0 is not a point of the spectrum of the operator By only if the function
Eq kta+8(2). does not vanish on the spectrum of the operator A. The theorem is proved. O

Bop = lim I" (477 iy o (1Y A)p) = B oot s(A)p, — Baatp(Au). (1)

Corollary. Under the assumptions of Theorem 1, the solution (u(t),p) is linear and, therefore,
depends continuously on the given limiting values ug,u; € F.

It follows from Theorem [ that the location of zeros of the function Fy ka48(2) determines whether
problem (1)—(3) with bounded operator A is uniquely solvable. As indicated in [2], fora =k =1, =0
and even for « = 1, k + 3 = 1 (in these cases, the zeros of the Mittag—Lefiler function I »(2) can be
written out explicitly) Condition (8) for an unbounded operator A is no longer a sufficient condition for
unique solvability, although the location of zeros also plays an important role. Therefore, we present
the required results from [10] concerning their location. In Theorem 1 [10], it was established that,
for a € (0,1), K+« + 3 >0, and an appropriate numbering, all sufficiently large (in absolute value)
Z€r0S fin, 1 € Z\ {0}, of the function E, x4+ 3(2) are simple and the following asymptotics as n — oo
holds:

Lo _ orn _ ™G @
' =2mni+ (k+ 3 1)<1n27r|n|+ 5 51gnn>+lnr(k+ﬂ) +o(1), n — =£oo. (12)

Further, we shall establish a necessary condition for the uniqueness of the solution of the inverse
problem (1)—(3) with unbounded operator A.

Theorem 2. Suppose that A is a linear closed operator in E. Suppose that the inverse prob-
lem (1)—(3) has a solution (u(t), p). For this solution to be unique, it is necessary that no zero fi,
of the entire function Eqy 1 q3(2) be an eigenvalue of the operator A.



Proof. Assume the converse; suppose that some zero p, from a countable set of zeros of the function
Eq kta+8(2) is an eigenvalue of the operator A with eigenvector h,, # 0.

Consider the function w(t) = ¥(t)h, and choose a scalar function ¥(t) so that the function w(t)
satisfies Eq. (1) for p = h,, and the zero initial condition (2). It is easy to verify that the function ¥ (t)
must be a solution of the following Cauchy problem:

DP(t) = pntp(t) + 577, (13)
lim I'=y9(t) = 0. (14)

Problem (13), (14) has a unique solution (see [11, p. 602], which can be expressed as

¢
W(t) — / (£ = ) B 0 (At — $))s* 1 ds,
0
Since iy, is a zero of the function Ey gya45(2), just as for (10), (11), we obtain
%Eﬁ Iﬁw(t) - F(k)Ea,kJraJrﬁ(.un) = 0.

Thus, the function w(t) = ¥ (t)h, satisfies Eq. (1) for p = h,, and the zero conditions (2) and (3),
which contradicts the assumption on the uniqueness of the solution, because the pair (u(t) + w(t),p +
hy) is also a solution of problem (1)—(3). The theorem is proved. O

To establish the unique solvability of problem (1)—(3) with unbounded operator A satisfying Condi-
tion 1, we reduce this problem to the operator equation by taking (7) into account:

Bp =g, (15)
where
1 i
B .18 k-1 _ — lim [*t# :
By = g b [ S = spds = i 1T, BB B (16)
¢ — (m — lim I°T, (t)uo) q € D(A); a7
F(k) ] (0% ? ?

here the function f(t) = t*~1p must satisfy Condition 2.

Thus, the unique solvability of problem (1)—(3) can be reduced to the problem of the existence of
an operator given on a subset of the Banach space E and inverse to the bounded operator B given by
relation (16). To amplily this point, let us obtain a more convenient representation for the operator B
with the help of the resolvent

R(AY) = (AT — A)71,
simultaneously restricting the domain of definition of the operator B to a dense set D(A) in F.

Theorem 3. Suppose that the operator A satisfies Condition | and k > «. Then, forany p € D(A),
the following expression is valid:

1 o+i00

Bp =

~ 5= o zo‘_lELkJraJr@(z)R(zo‘)pdz, (18)

where \ € p(A), p(A) is the resolvent set of the operator A, Re A > o > w.

Proof. First, suppose that p € D(A?), and hence,

p=R*Mpo, po€E.

Then, using the semigroup property of fractional integration and Hilbert’s identity, after integrating by
parts, from (16), (7) we obtain

! ' 1 7120 oxp(2s)
Bp=—= —— 1— k+5-1 . _Dl—a/ an p2
P g, O e gD [ R R R Oopod

—100



1 d i kot f-1 1 o+i00 1
N e a=
Tk f ot B)isld /O (t—s) i /U_,.OO @ exp(zs)

y ( R(z")po  R*Npo R(Mpo ) s ds

(N —29)2 A— 2o (A —z9)?

o +100 e
1 / exp(zs)R(z)po d: (19)

d t
- = lim= _ Nktotp-1 L
Tk t ot B)isld /0 (t=5) 550 ) Faia— )2
here the integrals along the line Re z = ¢ of functions of the form

22 Lexp(zs) R/ (N)po
(N — z)3—3 ’

j=12

vanish because of Jordan’s lemma.

The last integral is absolutely convergent; therefore, by changing the order of integration and using
relation 1.17 from [12]

1 Z
B p1(A2) = ] / eM(z — s)H L ds, >0, (20)
0

NV
from (19) we obtain the representation

L (77 B krars(2) R(ZY)po

o= 2—7” o—1i00 Zl_a()‘ - Za)2 e
1 [T Bipays(2) REY)((A — 2 + (221 = A))(M — A)p p
270 J o ioo 2=\ — 29)2
1 o+1i00 E o
Lrkrars(z) R(z*)(M\I — Aypdz,  pe D(A?). (21)

N 2—7” o—1i00 Zl_a()‘ - Za)
We let p1 = (A — A)p; then p; € D(A) and p = R(A)p;. Therefore, relation (20) takes the form

L7V Bigyars(2)

BREOP =53 | T =)

R(z%)p1dz,  p1 € D(A). (22)

The left-hand and right-hand sides of relation (22) are bounded operators coinciding on D(A). Since
D(A) is dense in F, relation (21) holds for all p; € E. But, in that case, p = R(A\)p1 € D(A) and, for
such p, the following expression is valid:

1 (77 B gats(?)

B — 5 — . < o _ I OLI _ A
b 2mi o —i00 21—04()\ _ Za) R(Z )(()\ Z ) + (Z ))p dz
1 o410 . .
“ o )P Pk R()p dz.
The theorem is proved. -

Remark 1. In Theorem 3, the constraint k > «vis imposed in order that the function f(t) = t*~'p satisfy
Condition 2, (ii). We can replace by this constraint the requirement of the smoothness of the element p,
namely, p € D(A). Then the function f(t) = t*~!p will satisfy Condition 2, (i).

Let us now turn to establishing sufficient conditions for the unique solvability of problem (1)—(3).
It follows from Theorem 2 that we must require that no zero p, of the function Iy g yqys(2) be an
eigenvalue of the operator A. Moreover, in order to establish solvability, we require that all zeros belong
to the resolvent set p(A4). Taking their asymptotics (12) into account, we note that, for k£ + 5 > 1,

the condition will be imposed only on a finite number of zeros w,, n =1,2,...,ngy, with Re ui Y <o,

because the others automatically belong to p(A). In the case of k + 5 < 1 zeros with Re ui/a < o, the
set of zeros is countable.



Theorem 4. Suppose that the operator A satisfies Condition 1, k> o, k+5>1, ¢ >w, and
ug, u1 € D(A®). If each zero i, n =1,2,...,n0, of the function Eq jyays(2) with Re ui/a <ac

belongs to p(A), then problem (1)—(3) has a unique solution.

Proof. We have already noted that the existence of a unique solution of problem (1)—(3) (or of the
operator equation (15)) can be reduced to the proof of the existence of an operator inverse to the bounded
operator B defined by relation (16) (or (18)). For ug, u; € D(A?), in view of the invariance of D(A) with
respect to T, (t), the right-hand side of Eq. (15) belongs to D(A?). Let us show that the operator B has
an inverse operator B~1: D(A3) — E.

Since each zero pi/® of the function Fa a4 5(2%) with Re /™ < o belongs to p(A), then it belongs

to p(A) together with some disk neighborhood €2,,. Suppose that I" is the contour in the complex plane
consisting of the line Re 2 = ¢ > w and the boundaries +,, of the disk neighborhoods €2,,, i.e.,

I'={Rez =0} U Y-

1/a

Reu, <o

We take A € p(A), Re A > ¢ > w and consider the bounded operator

221 R(2)qdz
T: F— FE. 2
" omi / Eoktoars(z9)(z — N3’ - (23)

Note that the integral in (23) is absolutely convergent by the choice of the contour I', estimate (5),
the asymptotics (12), and the well-known (see [12, p. 134]) asymptotic behavior of the Mittag—Lefiler
function for 0 < a < 2 and |z| — o0,

Eou(z) = azﬂ I exp(2/) — Z T —aj)a + O<—|z|”+1>’ (24)
=1
largz| <wvm, ve (%,a),
n 1 1
Nt R - o )
jlﬂu—wnﬂ+0<m“ﬂ) vT < forg | < (25)

Suppose that ¢ € D(A), 0 < o1 <ReA. Then, substituting (18) into (23) and using Hilbert’s
identity, we obtain

LO— 1R )ClZ 1 o1+00 a1 N
TBq= 2—m b Boprars(z7) (2% — N)? ’%/Ul_oo § Elkyarp(§) R(EY)q dg
o1+00 L= 1£a 1E1 k+a+6(£) R(Za)q—R(ﬁa)q
: d¢ dz. 26
27” //o o Lakrars(z®)(z* —A)? go— zo §dz (26)

The integral in (26) is absolutely convergent; therefore, changing the order of integration, we find that

YBq = / 22 1R(2*)qdz /01+°° E B jarp(§) dE

q— N2 o o 3 o Lo -
(27”) r Ea,kJrOHrﬁ(Z )(Z )‘) 01— 00 £ Z

o 22 b dz

B R(E™)qd 27
—@mylrmﬁ L (§)R( qﬁ/Qamwawxa—>%@—vw'()

The inner integral (aiter the replacement n = %) in the second summand (27) is zero owing to the choice
of the contour I' and Jordan’s lemma, while, to calculate of the integrals in the first summand, we use
relation (20), the formula (see[11, p. 33])

o0 ga—l
/O exp(—tE) B 1 (12%) dt — ,

£O‘—Zo‘

<1,

&



the equality
I"Eo 1(t92%) = t"Eqy p 1 (729), v >0,
and Jordan’s lemma. Thus, for ¢ € D(A) the following relation holds:
/ PTIR(ENgdz ke / o2ee 2 Lexp(§t) dS
2m E o

aktatp(z9) (2% = A)P =1 2—00 S
2271 R(2%)qdz
i Ik+a+6 1Ea oo
" 2mi / Eoktats(z2)(z% — A)3 R SICE
B / 2 'R(z%)qdz 1 R(n)gdn _ R
Cori (z¢ — \)3 27 Jry, (n—A)3

where (I'),, is the contour obtained from the contour I after the replacement

n=z%zel,ne [,

The commuting operators T, B, R(\) are bounded and the domain of definition D(A) is dense in £
therefore, we also have the equality
TBg=R*(\)gq for g€ E, TB:E— D(A%.
This implies that the operator
B~lq = (\I — A)*1q, for ¢ € D(A?)
is inverse to B. Indeed,
BB '¢ =B\ — A)®YTq= RN\ —A)P¢=q,  qe DAY,
B7'Bq= (M — A>*YBq—=q, gc k.
As to the solution of problem (1)—(3), the element p belonging to F is of the form
p =\ —AyTq,
where the element ¢ € D(A?) is defined by relation (17), the operator Y is defined by relation (23),
A€ p(A), ReA >0 > w,

while, for the function u(¢), the following expression is valid:

u(t) = To(t)ug + /Ot To(t — s)pds.

The theorem is proved. O

In the case k+ 3 <1, as already noted, the set of zeros u, with Re ui/a < ¢ of the function

Eo kta+t8(2) is countable; therefore, we require that the following condition be satisfied.

Condition 3. Each zero p,, n € Z\ {0}, of the function I, ria4s(z) with Re ui/a < ¢ belongs

to p(A), and there exists a d > 0 such that

R(j,)
1k

sup

Re 1/a0

<

Theorem 5. Let Conditions | and 3 be satisfied, k > o, k+ 3 <1, and ug,u; € D(A?). Then
problem (1)—(3) has a unique solution.



Proof. Just as in Theorem 4, we consider the operator T defined by relation (23). In the case under
consideration, the contour I" will contain a countable set of circles =y, and, in order to prove the absolute
convergence of the integral, we consider the integral over the circles -, in relation (23). Suppose that
(Yn)a is the contour obtained from -y, by replacing

E=z""z2€m € (Mma-

Then
o 22T R(2%)q dz 1 R(&)qdz
210 J oy Bokrars(z9)(zY = N2 270 J e Pakrats(E)(E — A)?
~— R{pn)q

N Z E pvar s(bn) X = 1) 28)

n=—o00,nA0
Using the relation (see [12, formula (1.5), p. 118])

1
E&,k+a+6(ﬂn) = L (Bakratrs—1(ttn) — (k+a+ 8 — D) EBakyars(tn))
T

and taking the asymptotics (24) of the Mittag—Lefiler function and the asymptotics (12) into account,
we obtain

By (T ) O expiTn ) 1
kot BHin) =0 T(k + B) NCE =SS
Gk ot 8= D™ T o) expi T )
F(k: + ﬁ)
k+ta+p—1 ( 1 ))
40— ).
L(k + 8)fin |1t ]?
Thus, we have
1 1 1

Eéz o n)| — ( +0 <—>> : 29
| et Jrﬁ(:u )| |,Un|2_1/a OéF(kf‘Fﬁ) |,un| ( )

In view of relation (29), Condition 3, and the asymptotics (12), the series (28) and hence also the
integral over | v, are absolutely convergent.

The convergence of the integral along the line Re z = ¢ in relation (23) follows, obviously, from
Condition 3 and the asymptotics (25).

The subsequent proof follows along the same lines as the proof of Theorem 4, and so it is omitted.
The proof of Theorem 5 is thus complete. O

Remark 2. Taking Remark 1 into account in Theorems 4 and 5, we can replace the constraint k > «
by the requirement of additional smoothness of the data of problem (1)—(3); namely, for 0 < k& < a, the
elements ug and u; must belong to D(A*). In addition, we have p € D(A), and the solution (u(t),p) of
problem (1)—(3) is defined by the same formulas as in Theorems 4 and 5.

Thus, Theorems 4 and 5 imply that, for k + 3 > 1, the inverse problem (1)—(3) has a solution under
less severe constraints on the operator A.
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