INVERSE PROBLEMS FOR EVOLUTION EQUATIONS
WITH FRACTIONAL INTEGRALS AT BOUNDARY-VALUE CONDITIONS

A.V. Glushak

ABSTRACT. The following problem is considered: to find a solution and a term of a first-order differ-
ential equation in a Banach space if the initial-value condition and an excessive condition containing
the fractional Riemann-Liouville integral are given. We show that the solvability of the considered
problem depends on the distributions of zeroes of the Mittag-Leffler function.

1. Problem Posing

Let E be a Banach space and A be a linear closed operator such that its domain D(A) is a
dense subset of E, while its resolvent set is not empty. Consider a problem of finding a function
u(t) € C1((0,1], E) belonging to D(A) for t € (0, 1] and the parameter p € E if the following relations
are given:

u'(t) = Au(t) + 5 "p,
u(0) = wo, (1.2)
lim IPu(t) = uy, (1.3)

where k > 0, IPu(t) = ﬁ / (t — s)°~Lu(s) ds is the left-sided fractional Riemann-Liouville integral
0
of order 3 > 0, and I'(+) is the gamma-function.
Following the traditional terminology, we call problem (1.1)—(1.3) an inverse problem to distinguish
it from the Cauchy problem (1.1), (1.2) with a known element p € F, which is called a direct problem.
The considered problem can be treated as follows: to reconstruct the nonstationary term t*~!p
of Eq. (1.1) by means of condition (1.3), which is an additional nonlocal boundary-value condition
containing the fractional Riemann—Liouville integral.
Unlike inverse problems for the equation

u'(t) = Au(t) + o(t)p (1.4)
with a continuous function ¢(t), Eq. (1.1) contains a term singular for 0 < k < 1. It contains a power
function p(t) = t*~1. Therefore, we have to use an operation of fractional integrodifferentiation to find

a solution of problem (1.1), (1.2) (see Theorem 2.1). This allows us to set additional condition (1.3)
by means of a fractional integral. This integral can be treated as a Cesaro mean over the segment



[0,1]. Then we prove that it is better (from the solvability point of view) to set a Cesaro mean over
the segment [0, 1] than to set a final value u(1).

To find a review of publications about inverse problems for Eq. (1.4) with various assumptions
regarding the operator A, see [4, 5, 12, 14, 15].

In the present paper, we consider the case where the operator A is a generator of a k-times integrated
semigroup (IS) Tx(t), where k is the positive parameter from Eq. (1.1).

The notion of an integrated semigroup allows us to weaken the assumptions for the resolving oper-
ator of the Cauchy problem for an abstract first-order differential equation (see [1, 8, 10]). Therefore,
the assumptions for the resolvent of the operator A are weakened as well. This requires an additional
smoothness of the initial data.

Definition. Let k£ > 0. A one-parametric family of linear bounded operators Tx(t),t > 0, is called a
k times 1S if the following conditions are satisfied:
s+t i
(1) T()T(t)Ti(s) — /(t b5 — I (r) dr — /(t bs— I () dr, s > 0.
s 0
(2) T1(0) = 0.
(3) For any x € F, the function Ty(t)x is continuous with respect to t > 0.
(4) There exist constants My > 0 and w € R such that
I Tk(t)|| < Moexp(wt), t>0. (1.5)
(5) To define the generator A of the IS Tk (), we define its domain D(A) as the set of elements
x € E such that there exists an element y € E (y = y(x)) satisfying the relation
¢

/Tk(s)y ds, t>0; (1.6)
0

tk
Tk(t) — m% =

then we assign Ax = y.
Examples of integrated semigroups are given below (see [8]).

Example 1.1. Let a linear operator B: D(B) — E be a generator of a cosine operator-function C'(t).
Let

Ch(t) — / C(s) ds,
0

t

ro | o /C’l(s)ds |

C—1 o)

A= ( o ) .
Then the family 7% (t) is a one time IS with generator A in the space E x E.
This example reflects the following well-known fact: in general, the unform well-posedness of the
Cauchy problem for the second-order equation
v"(t) = Bo(t)
is not equivalent to the uniform well-posedness in the space £ x I of the Cauchy problem for the

first-order equation
u'(t) = Au(t)
though the former problem is reduced to the latter one.



In the sequel, {k} and [k] denote the fractional and the integer part of k respectively.
Example 1.2. Any elliptic differential operator

g\ g\ ,
A= Z aaDay a:(aly"'yan)y Da: (a_ml> (a_mn> ) p(m): Z aal|a|m?1’“mgn7
laj<m |l <m
generates an [n/2 + 2|-times IS in the spaces Cy (R"), C}, (R™), and L, (R?), 1 < p < oo, provided

that the order of that elliptic operator exceeds n/2 and sup Re p(z) < oc.
rERM

2. Inverse Problems with Nonstationary Inhomogeneous Terms

To investigate inverse problem (1.1)—(1.3), we need to express the solution of problem (1.1), (1.2) via
[k]+1

4 (k)

dt

if K >0, k ¢ N. In the sequel, we will use the expression 2 — [1 — k| equal to k + 1 for {k} = 0 and to

[k] + 2 for {k} # 0.

Theorem 2.1. Let k >0, A be a generator of a k-times IS T (1), p € D(A), and ug € D (A2~11=H),
Then the function

d k
up and p, which are known. Introduce the denotation D* = (E) if k € Nand D¥ =

u(t) = (k) T(t)p + D*Ti(t)uo 2.1)
is a unique solution of problem (1.1), (1.2) and
(Kl 5
v
Il < M expwt) (15 p] + AT L)) + 37 S i, kN,
= (2.2)

k .
o
lu@) < Mt* exp(et) (lIpl + 1450 ) + 3 Sl A%, ke N.
=0 "

Proof. Substituting t*v(t) for u(t), we reduce problem (1.1), (1.2) to the problem

V() + %fu(t) — Avt) + 2

lim t*v(t) = uo;
tg%t v(t) = uo;

in [6], it is proved that it is uniquely solvable and a representation of its solution as well as its estimate
for k € N are found.

To prove the theorem for k ¢ N, we compute D*Ty(t)ug first. Taking into account relation (1.6),
we see that

i T

3 d [k]+1 s
D Tk(t)UO — Upg = (E) 1 — {k]} / t— T) /Tk(S)AUO ds dr
0 0
t
d\ FH yi- (2.3)
- (= B () A :
" s e i
0
d (K]
= (E) Il_{k}Tk(t)AUO = Dk_lTk(t)AUO.

If £ > 1, then, similarly to (2.3), we obtain the relation
Dk_lTk(t)Auo — tAUO = Dk_2Tk(t)A2U0,



etc. This yields the relation

K] 4
DT (t)uo = Z i Alug + 173, (0) Ay, (2.4)
7=0

Now we check whether the function u(t) defined by (2.1) is a solution of problem (1.1), (1.2). From
(2.1), (1.6), and (2.3), we have

' (t) = t* 7 tp + D(k)TR(t) Ap + DT (t) Aug = Ault) + t*1p;

hence, the function u(t) satisfies Eq. (1.1).
Relations (1.6) and (2.4) imply the validity of initial-value condition (1.2) since

. - . Pk _
%1_1)1(1) u(t) = I'(k) %1_1)% Ti(t)p + %K%D Ti(t)uo = uo.
Estimate (2.2) follows from (2.1), (1.5), (1.6), and (2.4). Indeed,

g
lu(®)| < Mol'(k)* exp(wt)llpll +) —||A]U0||
j= O
t
—{k} _k o
iy [ = explr) dr A ]

0
(%]
< Mexp(wt) (¢4 + 41 A ] ) + > A%

Finally, to prove the uniqueness of the solution of the considered problem7 we note that, substituting
w(t) + L(k)Tk(t)p for u(t), we reduce (1.1), (1.2) to the problem

w'(t) = Aw(t),  w(0) = uo,
which is uniquely solvable due to [8, Theorem 1.2]. O

Remark 2.1. If an operator A generates a 7y-times IS 7T%,(t), 0 < v < k, then the smoothness of the
initial element in the condition of Theorem 2.1 can weaken: ug € D (A2_[1_”f]).

Getting back to inverse problem (1.1)—(1.3), we note, using Theorem 2.1, that problem (1.1), (1.2)
is reduced to the following one: to find a function u(¢) and an element p € D(A) such that

u(t) = LK) Tu(t)p + DFTi(tuo, uo € D(A>~11=F], (2.5)

From (2.5) and (1.3), we obtain the following equation for finding the unknown element p:

1
s ~lim 18 DF
lim IPT(0p = <u1 lim 17D Tk(t)uo), ui € D(A).
In the operator form, it reads
Bp = g, (2.6)
where
1
_ ~tim I8 D
= 5 <u1 lim 17D Tk(t)uo), g € D(A), 2.7)
1
1
_ﬂ/ (1 —8)°"Y(s)p ds, B:D(A) — D(A). (2.8)

Thus, the unique solvability questlon for problem (1.1)—(1.3) is reduced to the question whether the
bounded operator B defined by (2.8) has an inverse operator defined on a subset of the Banach space
E. To answer the latter question, we obtain a (more convenient) representation of the operator B



with the aid of the resolvent R(\) = (M — A)~!, restricting the domain of the operator B to the
set D (AFH1)which is dense in E.

Theorem 2.2. Let k,3 > 0, and A be a generator of a k-times 1S Ty(t). Then the following repre-
sentation is valid for any p € D (AK+1):
1 U+z’ooE ( )
- LEk+B+1% %]
= — _ I—A 2.

o—100

0o ,
j
where o, (2) = Z m is the Mittag-Leffler function, A € p(A), p(A) is the resolvent set of
7=0
the operator A, and Re A > o > w.

Proof. 1t is proved in [9] that if the operator A generates an IS Tj(¢), then it has a resolvent R(\) in
the half-plane Re A > w, the estimate

d* [ R(\) Mn!

—_— < =0,1,2,... 2.1
() o
is valid for the said resolvent, and

R(X\) = N / exp(—A)Tk(t) dt. (2.11)
0

First, let p € D (A"), where [ = [k] + 2. Then p = R'(\)po, po € E; using the Hilbert identity,
from (2.8) and (2.11), obtain that

o+ico

1
Bp = ﬁ /(1 — )P ds 2%” / %(;S)R(Z)Rl()\)po dz
0 o—ioco
Ll a1 ewts) (R RO0m B\)po
m/(l—s)ﬁ d82_m’ / o (()\—z)l_ )\—z _'“_()\—z)l> dz (2.12)
i 1 T otico
= ﬁ /(1 — )P ds %m,lk / —exp(()z\szRZ(;)po dz
0 o—ico
(the integrals of all functions of the kind eX(I;\(Z_S)Zfzi(i)fO? j=1,2,...,1, over the line Re z = ¢ vanish

due to the Jordan lemma).
Applying in (2.12) the semigroup property of the fractional integration, we have

1 o+1i00

B 1 _ 1 exp(zs)R(z)p
B~y [0 b g [ TR 219

0 o—100

The latter integral converges absolutely. Therefore, changing the order of integrating and using the

relation
z
1
B 1 A2) = —— /e’\z(z —s)*tds, p>0, (2.14)
“ L) J



(see |3, relation 1.17]), we deduce the following representation from (2.13):

o+100
1 E1kya11(2) R(2)po
B _ 5
p 2mi ' (A — Z)l e
o+i00
_ 1 Erpysi(2)R(2) (A= 2)1 + (2] — A)) (M — A)! dz (2.15)
2ri ) (A= 2) .
1 U+z'ooE ( )
Lk+8+1(2 -1 ¢

- LA N R I—A D(AY).

omi | D= apr MR = AT ds pe DAY

If py = (M — A)~1p, then p; € D(A) and p = R'"Y(A)py. Then relation (2.15) takes the following
form:

o+ioco
_ 1 E (2)
BRI-L _ / ZLktBHINC) D(A). 21
B (\p1 = 5— [ B R(z)p1 dz, p1 € D(A) (2.16)

The left-hand side and the right-hand side of relation (2.16) are bounded operators coinciding with
each other in D(A). Since D(A) is dense in F, it follows that (2.16) holds for all p; € E. Then
p =R (\)p1 € D (A7) = D (AEHY). The following representation is valid for the specified p:

o+ico
Bp = 2% / —E&kjﬁg}f? R(z)(A — A)'~'p dz
L UWMR(@ (N = 2)T + (21 — A)) (A — A)2p dz
27ri0_iO<> (A —z)-t
S 7007&”“*5“(2) R(z)(AT — A)Mp dz
mi ) (=)W :

O

Before coming to the investigation of the solvability of inverse problem (1.1)—(1.3) in the general case,
we provide a criterion of its solvability in the case where the operator A is bounded.

Theorem 2.3. Let k and  be positive real numbers and A be a bounded operator. Then problem
(1.1)<(1.3) has a unique solution for any uo,u1 € E if and only if

E17k+5+1(2) 7é 0, z¢€ (T(A) (2.17)

Proof. Let U be an open set of the complex plane such that ¢(A4) C U and the boundary of U denoted
by Z consists of a finite set of rectifiable curves oriented towards the positive direction. Then the
operator e3> is represented by the relation

1
s — I e¥ R(z) dz
s

(see |2, pp. 608, 609]), while the operator B from (2.8) can be represented as follows:

1
1
Hﬂ/ m/ R(=)p dz ds (2.18)

0 =



Changing the order of integration in (2.18) and taking (2.14) into account, we obtain the following
representation:

1
k+ﬁ 1 e5? =
B ) [0 dsR(z)p dz = / Br e (2) R()p.
= 0

This means that the operator B is an analytic function of the operator A, ie., B = Fj 1541(A).
By virtue of the operator spectrum mapping theorem (see [2, pp. 608, 609]), we have o(B) =
F jypy1(0(A)). Thus, the origin does not belong to the spectrum of the operator B if and only
if the function F x4 g41(2) does not vanish on the spectrum of the operator A. O

It follows from Theorem 2.3 that the location of zeroes of the function £ yg41(2) determines the
unique solvability of problem (1.1)-(1.3) with a bounded operator A. The following example (see |7,
p. 485]) shows that, in general, this criterion is not valid even for generators of Cy-semigroups.

Example 2.1. Consider the Banach space Iy of number sequences

o9}

{tm} s D Juml® < +oo

m—=—o0

and define a linear unbounded operator A{u,,} = {im u,}, m € Z, on the set

D(A) = {{um} ely: i Im um|? < +oo} )

m—=—0o0

For m € Z, introduce the following notation: U(t) = {un(t)}, Up = {(uo)m}, U1 = {(u1)m}, and
P = {pn}. For k + 3 =1, consider the problem

U'(t) = AU(t) +t* 1P, t e (0,1], (2.19)
U(0) = Uo, lim 1°U(t) = Uy. (2.20)

The spectrum o(A) of the operator A consists of numbers {im}, m € Z, while the zeroes u, of the

function ()1
exp(z
Brktpi1(z) = Br2(2) = ————

are computed explicitly: u, = 2nmi, n € Z\ {0}.

Since 7 is irrational, it follows that the relation im = 2nwi is impossible for the considered values
of m and n. Hence, all zeroes u, = 2nmi are regular points of the considered operator A.

Problem (2.19), (2.20) is uniquely solvable if and only if the operator B defined by (2.8) is invertible
and the inverse operator is defined on D(A). Here, we have

1

1
1 1
BP = — [ (1 —8)""'Ty(s)P ds = —/1— i-lp ims) ds pp,
T(B) /( s) k(s)P ds T ( s) Lkt1(ims) ds p
0 0
, , exp(im) — 1
= B gerpraim) pm} = {E120im) pn} = § ——————Pm ¢, mEL.
If the operator B~ is defined on D(A), then |exp(im) — 1] > > 0, m € Z\ {0}, but it is impossible
because the set {exp(im)}, m € Z\ {0}, is dense in the unit circle (see [7, p. 485]).

It follows from the latter example that additional restrictions for the operator A and the val-
ues up and w1 are needed in order to obtain sufficient conditions of the unique solvability for prob-
lem (1.1)-(1.3).

Zeroes of the Mittag-Lefller function are important for the further results as well, so we provide
the needed results about their location from [13]|. It is proved in [13, Theorem 1| that if & + 3 > 0,



then the zeroes can be enumerated to satisfy the following condition: all zeroes p,, n € Z\ {0}, of
the function I} 4 g41(2) such that their absolute values are large enough are simple and the following
asymptotics is valid as n — £oo:
, T In |n|

tn, =210t + (k+ 5 —1) | In2x|n| + 5 signn ) - InI'k+5)+ O ) n — too.  (2.21)
Moreover, it follows from |13, Theorem 3] that all zeroes p, are located in the half-plane Re z < k+5—1
for 0 < k+5 < 1, at the imaginary axis for k43 = 1, and in the half-plane Re z > k+6—1for k+5 > 1.
Further, we find a necessary uniqueness condition for the solution of inverse problem (1.1)—(1.3).

Theorem 2.4. Let k and (3 be positive real numbers. Let A be a linear closed operator in E. Suppose
that (u(t), p) is a solution of inverse problem (1.1)—(1.3). This solution is unique if and only if any
zero of the entire function E ygy1(2) is different from any eigenvalue of the operator A.

Proof. Suppose, to the contrary, that p, belongs to the countable set of zeroes of the function
E1 kys+1(2) and py, is an eigenvalue of the operator A corresponding to an eigenvector hy, # 0.

Introduce the function w(t) = ¥(t)h, and select a scalar function ¥(t) such that the function w(t)
satisfies Eq. (1.1) with p = h,, and condition (1.2) with ug = 0. It is easy to see that the function ¥(t)
should satisfy the following Cauchy problem:

Y1) = () + 1771, (2.22)
lim (1) = 0. (2.23)

By virtue of Theorem 2.1, problem (2.22), (2.23) has a unique solution. Taking into account (2.14),
one can represent it as follows: ¥(t) = I'(k)I* exp (pnt) = T(k)tREy i1 (nt).
Since p, is a zero of the function Ej ;1 541(2), we have

tim 1%w(t) = D(k) lim 17 (1 By (l) ) = D6 B s (i) = 0.

Thus, the function w(t) = ¥(t)h, satisfies Eq. (1.1) with p = h,, and conditions (1.2) and (1.3) for
ug = u1 = 0. This contradicts the assumption about the uniqueness of the solution because the pair
(u(t) +w(t),p + hy,) satisfies problem (1.1)—(1.3) as well. O

Now we find sufficient conditions of the unique solvability of problem (1.1)—(1.3). We have to assume
(see Theorem 2.4) that any zero p, of the function Ej4511(2) is different from any eigenvalue of
the operator A. Also, to ensure solvability, we assume that they belong to the resolvent set p(A). If
k4 8 > 1, then this condition is imposed only on a finite number of zeros located to the left of the
line {Re 2z = ¢ > w} because the other zeroes belong to p(A) due to (2.21).

Theorem 2.5. Let k and ( be positive numbers, k+ 3 <1, ¢ > w, A be a generator of a k-times
IS Ti(t), ug € D (ASHE=U=HF) " and uy € D (AR If any zero p,, n € Z\ {0}, of the function
E1 kvs4+1(2) such that Re p, < o belongs to p(A) and there exists a positive d such that

R
sup (lzn) <d, (2.24)
Re pn<o oy,

then problem (1.1)—(1.3) has a unique solution.

Proof. As we have noted above, the proof of the unique solvability of problem (1.1)—(1.3) (or operator
equation (2.6)) is reduced to the proof of the invertibility of the bounded operator defined by (2.8)
(respectively, (2.9)). Since D(A) is invariant with respect to Ty (t) (see [8, Proposition 1.2]) for up €
D (ASHFI=I=K)) and uy € D (AFH+1)) it follows that the right-hand side ¢ of Eq. (2.6) belongs to
D (A[k]+4). Let us prove that condition (2.24) implies that the operator B has an inverse operator
B~ D (AMHY) — D(A).



Since any zero p, of the function I} x4 311(2) such that Re ,, < o belongs to p(A), it follows that
there exists its circular neighborhood €2, belonging to p(A) as well. Let I' be a contour in the complex
plane containing of the line {Re 2 = ¢ > w} and the boundaries =, of the circular neighborhoods €2,,,
ie,, I'={Rez =0} U",. The spectrum o(A) is located inside the domain such that the contour I' is
its boundary.

Let A € p(A) and Re A > ¢ > w. Consider the bounded operator

qdz

-0 / (o) (2 T:FE—E. (2.25)

Note that the latter integral absolutely converges by virtue of the choice of the contour I', esti-
mates (2.10) and (2.24), asymptotic relation (2.21), and the following asymptotic behavior of the
Mittag-Leffler function as |z| — oo (see [3, p. 134]):

n 1 1
ELM(’Z) :Zl—MeZ_ZW+O<|Z|—n—1> , |argz| <vm, V€& <§,1> , (226)
=1
Fy (2 Z I +0 (|27 Y, v <|argz| <. (2.27)
7=1
Indeed,
1 R(z)q dz = R(un)q

L - . (2.28)

2 Brapn (90— 9T Eo Bl iyt (1) O — g P

It is known from [3, (1.5), p. 118]) that
B gy g () = bt (Brers () = (K + B) Brkrsin (1) -
Hence, taking into account asymptotic relations (2.26) and (2.21), we obtain

1 (M% S e !

Bl eysp (n) = i Tk + 3) ST+ B — D

e B nn e kg <#>>
nl®/ )

I'(k+5) Uk + B)pin

Thus, we have

Pravon o)l = o (s +© () (229)

By virtue of relation (2.29), condition (2.24), and asymptotic expansion (2.21), series (2.28) absolutely
converges. Therefore, the integral over U, absolutely converges as well.

The convergence of integral (2.25) over the line {Rez = o} follows from (2.24) and (2.27).

Let ¢ € D (AFH1) and ¢ < o1 < Re A. Then, substituting (2.9) in (2.25) and applying the Hilbert
identity, we obtain

Tqu—

o1+
R(z) d / By ks (§REM — AHMg dg
2m B gipi(z) (A — z) k3 2ri

(A =&
7 (2.30)

o1-+co

By p(8) R(z)=R(E) ;MK
(27i)2 / / By sz (M — A)Mq dédz.

- F P —OF £



The integral in (2.30) absolutely converges; therefore, changing the order of integrating, we have

—1 [ _REOW = AW dz ”7“’ i (€) de

TG | B @0 a7 | BogWE o)

01—00

(2.31)

1 ”7°°E1,k+ﬁ+l<£>R<£><M—A)% | &z
i) - on J Fricr @0~ 2 —2)

The internal integral of the second term of (2.31) is equal to zero by virtue of the choice of the contour
I' and the Jordan lemma. To compute the integrals of the first term, we use the integral Cauchy
theorem. Thus, the following relation holds for any g € D (AF+1):

— Al (2[k]+2) — A
TBqL/R(Z)()J AWgdz R (NN — A)l¥lg

T 27 (z — 2T (2[k] + 2)!

01—00

= RIS\ — A)Flg = RIEH3())q.
The commuting operators T, B, and R(A) are bounded and the domain D (A[k]“) is dense in F.
Therefore, the relation YBg = RIFHF3(\)g holds for ¢ € F and YB : E — D (AlF+3) as well. This
means that the operator B~lq = (A — A)#+37Tq is inverse for B if ¢ € D (AlF+2). Indeed, we have

BB~ 'q =B\ — A rg = RMB )1 — A =g, g e D(AMT?),

B™'Bg= W\ - AM3YBg=¢, ¢eE.
Regarding solutions of problem (1.1)-(1.3), any p belonging to D(A) is represented as p = (A —

A) [K+37¢, where the element ¢ € D (A[k]+4) is defined by relation (2.7), the operator T is defined by
relation (2.25), A € p(A), Re A > ¢ > w, and the function u(t) can be found via relation (2.5). O

If K+ 3 > 1, then condition (2.24) is satisfied because the number of zeroes such that Reu, < ¢
is finite. Therefore, formulating the next theorem, we may omit condition (2.24). Taking this into
account, we prove the next theorem in the same way as Theorem 2.5.

Theorem 2.6. Let k>0, 3 >0, k+ 3> 1, 0 > w, A be a generator of a k-times IS T(t), ug €
D (ASHEI=I=KD " and uy € D (AR If any zero pn, n = 1,2,...,n0, of the function Eykygy1(2)
such that Re p, < o belongs to p(A), then problem (1.1)—~(1.3) has a unique solution.

Remark 2.2. Suppose that the operator A is a generator of a semigroup 7T'(t) strongly differentiable
for t > 0. Then its resolvent set contains the half-plane {A : ReA >w} and a set of the kind
{A: ReA>a—"0bIn|Im A|} (see [11]). Then the assertion of Theorem 2.6 takes place for k + 3 > 1; if
1—k— (3 < b, then it is valid for k43 < 1 as well because the spectrum of the operator A can contain
only a finite number of zeroes p,. If A is a generator of an analytic semigroup, then Theorem 2.6
holds for all positive k and 3. Also, taking into account Remark 2.1, one can decrease the smoothness
of the elements up and .

Remark 2.3. It is easy to see that Theorems 2.5 and 2.6 about unique solvability hold even if 3 =0
in condition (1.3); then IPu(t) = u(t) and the additional condition is the setting of a final value:
U(l) = Ui.

Remark 2.4. It is possible to reduce equations of kind
l
o' (t) + : uw(t) = Au(t) +t"p, l+m+1>0,

to the equation
V'(t) = Av(t) + ¢,



using the following change of variables: u(t) = t~w(t). Thus, assuming that the operator A is a
generator of an [ +m + 1 times IS, we can formulate a similar inverse problem and find conditions for
its unique solvability.

3. Inverse Problems with Stationary Inhomogeneous Terms

In the above papers [4, 5, 12, 14, 15] devoted to the inverse problem for Eq. (1.4), the case where
A is a generator of an IS is not considered. Now we formulate the corresponding inverse problem and
results about its solvability.

Consider the inverse problem

W' (t) = Au(t) +p, 0<t<1,
u(0) = up,
%irri 1Pu(t) = uy, (3.3)

where 3 > 0 (17 is the identity operator if 3 = 0) and A is the generator of an IS T (t), v > 0.

The case where v = 3 = 0 and A is a generator of a Cy-semigroup is well-known from [4, 5, 12,
14, 15]; it is a “limiting” case for problem (3.1)—(3.3). The case where v =1 and § > 0 is covered by
Theorem 2.6. Consider problem (3.1)—(3.3) with weaker assumptions on the operator A.

By virtue of |9, Theorem 3|, problem (3.1), (3.2) is reduced to the problem to find a function ()
and an element p € D (A'~!=71) such that the following relation is valid:

w(t) = D7 | 7,y + / Lrpdr|, we D (A1), (3.4)
0

From relation (3.4) and condition (3.3), we obtain the following equation to find p from:
¢
lim 1° D7 / T(r)p dr =y —lim I°DVT (Hug,  uy € D(A);
0
it has the following operator form:
Bop = qo,
where
o = uj — %EH IPDTy (o,  qo € D(A),

t
Bop = lim "D / T (m)p dr, By: D(AI=1) = D(A). (3.5)
0

The unique solvability for problem (3.1)—(3.3) is equivalent to the existence of an inverse operator for
the operator By, defined on D <A4+["/]—[1—'y]>.

Theorem 3.1. Let v and 3 be nonnegative real numbers, while A is a generator of a y-times IS T (t).
Then the following representation is valid for any p € D (AM“):

o+ico
1 Eh g12(2)
Bop = — —LA22, 71— A :

where A € p(A) and Re A > 0 > w.



Proof. First, let p € D (A'), where I = [4] + 2. Then p = RY(\)po and po € E. From (3.5) and (2.11),
we have

o+i00

Bop = hm IﬁD”’/ Py / il ZS) —— R(2) R"(\)po dzds
o+i00
e By exp zs)
~ lim 17D / o / S R(:)po dads (3.7)
1 o410 ( t) 1 U+zooE ( )
— lim — 7#11 / SXDARY) — / L +21% I — At
o | @ dz =g | e R = AV de

(this relation is obtained in the same way as relations (2.12), (2.13), and (2.15)).

From relation (3.7), we deduce representation (3.6) for p € D (AM*1) (similarly to the proof of
Theorem 2.2). O

Theorem 3.2. Let 3 > 0, A be a linear closed operator in E, and problem (3.1)—(3.3) have a solution.
If this solution is unique, then the set of zeroes of the entire function Iy g1 2(2) does not meet the set
of eigenvalues of the operator A.

The proof of Theorem 3.2 is similar to the proof of Theorem 2.4.

Theorem 3.3. Suppose that 3 =0, v > 0, 0 > w, A is a generator of a ~y-times IS T, (), ug €
D (ASHDI=20) and wy € D (A0 0 If any zero v, = 2mni, no€ Z\ {0}, of the function
Er2(z) = (exp(z) — 1)/z belongs to p(A) and there exists a positive d such that

R(vn)
su <d, 3.8
Re V7?<0' V;L/ B ( )

then problem (3.1)—(3.3) has a unique solution.

Theorem 3.4. Suppose that 3 > 0, v > 0, 0 > w, A is a generator of a ~y-times IS T (t), ug €
D (ASHDI=21290) Cand g € D (AYOI=0=9) I any zero v, mo= 1,2, .. no, of the function Ey gy2(2)
such that Rev, < o belongs to p(A), then problem (3.1)—(3.3) has a unique solution.

Proof. Proofs of Theorems 3.3 and 3.4 are similar to proofs of Theorems 2.5 and 2.6; the corresponding
relations take the following form:

R(z dz
Toqo = =— (2)do

Yog:E— K
27T’L El 5+2(Z) — Z)[’Y]jLSy 0 - ’

where ['g is a contour similar to the contour I': it surrounds the zeroes v, of the Mittag-Leffler function
Eypy1(2);

YoBogo — RO (Nge,  qo € D (Al—h—v]) . ToBy:D (Al—[l—v]) D (AM+3) ;
Bylge = (M — A3 Y000, e D (A[“/HS) :
BoBj gy = Bo(M — A3 Y000 = o, qo € D (A[’Y]+3) :
B3 Bodo = (M = AP Bogo = o, a0 € D (A7)

p=— A3, goe D (A“M_“_ﬂ) , peD (Al_[l_ﬂ) ;
finally, the function u(t) is defined by relation (3.4).



To conclude, we note that if v = 0, then Theorem 3.3 is [4, Theorem 4|. We know from [4] that the
belonging of the points v, = 2mni to the resolvent set is not a sufficient condition of the solvability.
In [4, Theorem 1], condition (3.8) is replaced (for v = 0) by the following condition: for any p € F,

+o0
the series >° R (v,)p is summable in average.

n=—oo

n#£0

Thus, the conditions formulated in [5] for the case where =y = 0 and ug, u; € D(A) are necessary
and sufficient for the unique solvability of problem (3.1)—(3.3).
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