DC Field | Value | Language |
dc.contributor.author | Meirmanov, A. M. | - |
dc.contributor.author | Shmarev, S. | - |
dc.date.accessioned | 2017-10-16T11:32:25Z | - |
dc.date.available | 2017-10-16T11:32:25Z | - |
dc.date.issued | 2015 | - |
dc.identifier.citation | Meirmanov, A.M. A compactness lemma of aubin type and its application to degenerate parabolic equations / A. M. Meirmanov, S. Shmarev // Electronic Journal of Differential Equations. - 2015. - Vol.2014, №227. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/20319 | - |
dc.description.abstract | Let Ω ⊂ Rⁿ be a regular domain and Φ(s) ∈ C loc (R) be a given function. If M⊂ L₂ (0, T ; W½ (Ω)) ∩ L ∞ (Ω × (0, T )) is bounded and the set {∂t Φ(v)|v ∈ M} is bounded in L₂ (0, T ; W-¹₂ (Ω)), then there is a sequence {vk} ∈ M such that vk ⇀ v ∈ L₂ (0,T ; W¹₂ (Ω)), and vk → v, Φ(vk) → Φ(v) a.e. in Ωτ = Ω × (0, T). This assertion is applied to prove solvability of the one-dimensional initial and boundary-value problem for a degenerate parabolic equation arising in the Buckley-Leverett model of two-phase filtration. We prove existence and uniqueness of a weak solution, establish the property of finite speed of propagation and construct a self-similar solution | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | mathematical analysis | ru |
dc.subject | parabolic equations | ru |
dc.subject | compactness lemma | ru |
dc.subject | two-phase filtration | ru |
dc.subject | nonlinear PDE | ru |
dc.subject | degenerate parabolic equations | ru |
dc.title | A compactness lemma of aubin type and its application to degenerate parabolic equations | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|