Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/20319
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeirmanov, A. M.-
dc.contributor.authorShmarev, S.-
dc.date.accessioned2017-10-16T11:32:25Z-
dc.date.available2017-10-16T11:32:25Z-
dc.date.issued2015-
dc.identifier.citationMeirmanov, A.M. A compactness lemma of aubin type and its application to degenerate parabolic equations / A. M. Meirmanov, S. Shmarev // Electronic Journal of Differential Equations. - 2015. - Vol.2014, №227.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/20319-
dc.description.abstractLet Ω ⊂ Rⁿ be a regular domain and Φ(s) ∈ C loc (R) be a given function. If M⊂ L₂ (0, T ; W½ (Ω)) ∩ L ∞ (Ω × (0, T )) is bounded and the set {∂t Φ(v)|v ∈ M} is bounded in L₂ (0, T ; W-¹₂ (Ω)), then there is a sequence {vk} ∈ M such that vk ⇀ v ∈ L₂ (0,T ; W¹₂ (Ω)), and vk → v, Φ(vk) → Φ(v) a.e. in Ωτ = Ω × (0, T). This assertion is applied to prove solvability of the one-dimensional initial and boundary-value problem for a degenerate parabolic equation arising in the Buckley-Leverett model of two-phase filtration. We prove existence and uniqueness of a weak solution, establish the property of finite speed of propagation and construct a self-similar solutionru
dc.language.isoenru
dc.subjectmathematicsru
dc.subjectmathematical analysisru
dc.subjectparabolic equationsru
dc.subjectcompactness lemmaru
dc.subjecttwo-phase filtrationru
dc.subjectnonlinear PDEru
dc.subjectdegenerate parabolic equationsru
dc.titleA compactness lemma of aubin type and its application to degenerate parabolic equationsru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Meirmanov_A_compactness_14.pdf264.75 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.