DC Field | Value | Language |
dc.contributor.author | Soldatov, A. P. | - |
dc.date.accessioned | 2020-06-06T19:44:03Z | - |
dc.date.available | 2020-06-06T19:44:03Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Soldatov, A. P. On the theory of anisotropic flat elasticity / A. P. Soldatov // Journal of Mathematical Sciences. - 2018. - Vol.235, N4. - P. 484-535. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/31540 | - |
dc.description.abstract | For the Lame system from the flat anisotropic theory of elasticity, we introduce generalized double-layer potentials in connection with the function-theory approach. These potentials are built both for the translation vector (the solution of the Lame system) and for the adjoint vector functions describing the stress tensor. The integral representation of these solutions is obtained using the potentials | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | theory of anisotropic | ru |
dc.subject | Lame system | ru |
dc.subject | Riemann-Hilbert problem | ru |
dc.subject | boundary-value problem | ru |
dc.subject | double layer potentials | ru |
dc.subject | structure of matrices | ru |
dc.subject | integrals | ru |
dc.title | On the theory of anisotropic flat elasticity | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|