DC Field | Value | Language |
dc.contributor.author | Meirmanov, A. M. | - |
dc.contributor.author | Galtseva, O. A. | - |
dc.contributor.author | Gritsenko, S. A. | - |
dc.date.accessioned | 2021-03-11T12:15:25Z | - |
dc.date.available | 2021-03-11T12:15:25Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Meirmanov, A. M. On homogenized equations of filtration in two domains with common boundary / A.M. Meirmanov, O.A. Galtseva, S.A. Gritsenko // Izvestiya: Mathematics. - 2019. - Vol.83, N2.-P. 330-360. - Doi: https://doi.org/10.1070/IM8708. - Refer.: p. 358-360. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/37923 | - |
dc.description.abstract | We consider an initial-boundary value problem describing the process of filtration of a weakly viscous fluid in two distinct porous media with common boundary. We prove, at the microscopic level, the existence and uniqueness of a generalized solution of the problem on the joint motion of two incompressible elastic porous (poroelastic) bodies with distinct Lam’e constants and different microstructures, and of a viscous incompressible porous fluid | ru |
dc.language.iso | en | ru |
dc.subject | mathematical analysis | ru |
dc.subject | heterogeneous media | ru |
dc.subject | periodic structure | ru |
dc.subject | Lam'e equations | ru |
dc.subject | Stokes equations | ru |
dc.subject | homogenization | ru |
dc.subject | two-scale convergence | ru |
dc.title | On homogenized equations of filtration in two domains with common boundary | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|