Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/37923
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMeirmanov, A. M.-
dc.contributor.authorGaltseva, O. A.-
dc.contributor.authorGritsenko, S. A.-
dc.date.accessioned2021-03-11T12:15:25Z-
dc.date.available2021-03-11T12:15:25Z-
dc.date.issued2019-
dc.identifier.citationMeirmanov, A. M. On homogenized equations of filtration in two domains with common boundary / A.M. Meirmanov, O.A. Galtseva, S.A. Gritsenko // Izvestiya: Mathematics. - 2019. - Vol.83, N2.-P. 330-360. - Doi: https://doi.org/10.1070/IM8708. - Refer.: p. 358-360.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/37923-
dc.description.abstractWe consider an initial-boundary value problem describing the process of filtration of a weakly viscous fluid in two distinct porous media with common boundary. We prove, at the microscopic level, the existence and uniqueness of a generalized solution of the problem on the joint motion of two incompressible elastic porous (poroelastic) bodies with distinct Lam’e constants and different microstructures, and of a viscous incompressible porous fluidru
dc.language.isoenru
dc.subjectmathematical analysisru
dc.subjectheterogeneous mediaru
dc.subjectperiodic structureru
dc.subjectLam'e equationsru
dc.subjectStokes equationsru
dc.subjecthomogenizationru
dc.subjecttwo-scale convergenceru
dc.titleOn homogenized equations of filtration in two domains with common boundaryru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Meirmanov_On_homogenized.pdf496.81 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.