Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/41284
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMiroshnichenko, A. S.-
dc.contributor.authorMikhelev, V. M.-
dc.date.accessioned2021-06-04T13:41:29Z-
dc.date.available2021-06-04T13:41:29Z-
dc.date.issued2021-
dc.identifier.citationMiroshnichenko, A.S. Classification of medical images of patients with Covid-19 using transfer learning technology of convolutional neural network / A.S. Miroshnichenko, V.M. Mikhelev // Journal of Physics: Conference Series. - 2021. - Vol.1801.-Art. 012010. - (Artificial intelligence and digital technologies in technical systems 2020 (AIDTTS-2020) : International Scientific Conference, Volgograd, Russian Federation, 20-21 October 2020). - Doi: 10.1088/1742-6596/1801/1/012010. - URL: https://iopscience.iop.org/article/10.1088/1742-6596/1801/1/012010/pdfru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/41284-
dc.description.abstractThe paper shows an approach to solving the problem of classifying X-ray images of the chest part of a healthy person and with the presence of COVID-19. The method is a trainable convolutional neural network. The results obtained allow improving existing approaches and methods in the field of classification of medical images with COVID-19, as well as obtaining an auxiliary mechanism for detecting COVID-19 in patientsru
dc.language.isoenru
dc.subjecttechniqueru
dc.subjectcomputer engineeringru
dc.subjectmedical imagesru
dc.subjectconvolutional neural networkru
dc.subjectCovid-19ru
dc.subjecttransfer learningru
dc.titleClassification of medical images of patients with Covid-19 using transfer learning technology of convolutional neural networkru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Miroshnichenko_Classification.pdf817.9 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.