Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/41375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKlimenko, D. N.-
dc.contributor.authorYurchenko, N. Yu.-
dc.contributor.authorStepanov, N. D.-
dc.contributor.authorZherebtsov, S. V.-
dc.date.accessioned2021-06-07T09:58:10Z-
dc.date.available2021-06-07T09:58:10Z-
dc.date.issued2021-
dc.identifier.citationPrediction of strength characteristics of high-entropy alloys Al-Cr-Nb-Ti-V-Zr systems / D.N. Klimenko [et al.] // Materials Today: Proceedings. - 2021. - Vol.38, Pt.4.-P. 1535-1540. - (Modern Trends in Manufacturing Technologies and Equipment 2020 (ICMTMTE 2020) : International Conference, Sevastopol, 7-11 September 2020). - Refer.: p. 1539-1540.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/41375-
dc.description.abstractExperimental evaluations of mechanical properties and investigations microstructure are time-intensive, requiring weeks or months to produce and characterize a small number of candidate alloys. In this work, machine learning approaches were used for prediction yield strengths of high-entropy alloys Al-Cr-Nb- Ti-V-Zr system at 20, 600 and 800 C. Surrogate prediction model was built with support vector regression algorithm by a dataset including more 30 alloys Al-Cr-Nb-Ti-V-Zr system. Four model alloys were fabricated for testing the surrogate model by vacuum arc melting. After that model alloys were annealed in a quartz tube at 1200 C 10 hru
dc.language.isoenru
dc.subjecttechniqueru
dc.subjectmetal scienceru
dc.subjectalloysru
dc.subjecthigh entropy alloysru
dc.subjectmachine learningru
dc.subjectyield strengthru
dc.subjectmicrostructureru
dc.subjectelectron microscopyru
dc.subjecttemperaturesru
dc.titlePrediction of strength characteristics of high-entropy alloys Al-Cr-Nb-Ti-V-Zr systemsru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Klimenko_Prediction_21.pdf1.94 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.