Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/42574
Title: Generalized likelihood ratio test for optical subpixel objects’ detection with hypothesis-dependent background covariance matrix
Authors: Golikov, V.
Samovarov, O.
Zhilyakov, E.
Jose, L.
Rullan-Lara
Hussain Alazki
Keywords: technique
cybernetics
subpixel detection
image sequences
unknown background spectra
optical objects
Issue Date: 2020
Citation: Generalized likelihood ratio test for optical subpixel objects’ detection with hypothesis-dependent background covariance matrix / V. Golikov [et al.] // Journal of Applied Remote Sensing. - 2020. - Vol.14, №4.-Art. 046513. - Doi: 10.1117/1.JRS.14.046513.
Abstract: Much interest has arisen in the problem of detecting weak optical subpixel objects in a sequence of images immersed in a heavy homogeneous Gaussian clutter background. In optical systems, the presence of the objects changes the background plus the channel noise covariance matrix
URI: http://dspace.bsu.edu.ru/handle/123456789/42574
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Zhilyakov_Generalized_20.pdf3.05 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.