DC Field | Value | Language |
dc.contributor.author | Zimin, R. | - |
dc.contributor.author | Meirmanov, A. M. | - |
dc.date.accessioned | 2013-04-12T11:17:57Z | - |
dc.date.available | 2013-04-12T11:17:57Z | - |
dc.date.issued | 2012 | - |
dc.identifier.citation | Meirmanov, A.M. Mathematical models of a diffusion-convection in porous media / A.M. Meirmanov, R. Zimin ; Belgorod State University // Electronic journal of differential equations. - 2012. - Vol.2012 (2012), N105.-P. 1-16. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/4295 | - |
dc.description.abstract | Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution | ru |
dc.language.iso | en | ru |
dc.subject | physics | ru |
dc.subject | mathematical physics | ru |
dc.subject | mathematical models | ru |
dc.subject | diffusion-convection | ru |
dc.subject | porous media | ru |
dc.title | Mathematical models of a diffusion-convection in porous media | ru |
dc.type | Article | ru |
dc.identifier.citationpublication | Electronic journal of differential equations | ru |
dc.identifier.citationnumber | 105 | ru |
dc.identifier.citationvolume | 2012 | ru |
dc.identifier.citationfirstpage | 1 | ru |
dc.identifier.citationendpage | 16 | ru |
dc.description.refereed | yes | ru |
dc.description.institution | Belgorod State University | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|