Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/45368
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDebbouche, A.-
dc.contributor.authorPolovinkina, M. V.-
dc.contributor.authorPolovinkin, I. P.-
dc.contributor.authorValentim, C. A.-
dc.contributor.authorDavid, S. A.-
dc.date.accessioned2022-02-08T11:35:11Z-
dc.date.available2022-02-08T11:35:11Z-
dc.date.issued2021-
dc.identifier.citationOn the stability of stationary solutions in diffusion models of oncological processes / A. Debbouche [et al.] // The European Physical Journal Plus. - 2021. - Vol.136, №1.-Art. 131.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/45368-
dc.description.abstractWe prove a sufficient condition for the stability of a stationary solution to a system of nonlinear partial differential equations of the diffusion model describing the growth of malignant tumors. We also numerically simulate stable and unstable scenarios involving the interaction between tumor and immune cellsru
dc.language.isoenru
dc.subjectmatematicsru
dc.subjectmathematical oncologyru
dc.subjectdifferential equationsru
dc.subjectdiffusion modelsru
dc.titleOn the stability of stationary solutions in diffusion models of oncological processesru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Polovinkin_Stability.pdf1.87 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.