DC Field | Value | Language |
dc.contributor.author | Debbouche, A. | - |
dc.contributor.author | Polovinkina, M. V. | - |
dc.contributor.author | Polovinkin, I. P. | - |
dc.contributor.author | Valentim, C. A. | - |
dc.contributor.author | David, S. A. | - |
dc.date.accessioned | 2022-02-08T11:35:11Z | - |
dc.date.available | 2022-02-08T11:35:11Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | On the stability of stationary solutions in diffusion models of oncological processes / A. Debbouche [et al.] // The European Physical Journal Plus. - 2021. - Vol.136, №1.-Art. 131. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/45368 | - |
dc.description.abstract | We prove a sufficient condition for the stability of a stationary solution to a system of nonlinear partial differential equations of the diffusion model describing the growth of malignant tumors. We also numerically simulate stable and unstable scenarios involving the interaction between tumor and immune cells | ru |
dc.language.iso | en | ru |
dc.subject | matematics | ru |
dc.subject | mathematical oncology | ru |
dc.subject | differential equations | ru |
dc.subject | diffusion models | ru |
dc.title | On the stability of stationary solutions in diffusion models of oncological processes | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|