DC Field | Value | Language |
dc.contributor.author | Dzarakhohov, A. | - |
dc.contributor.author | Luchko, Yu. | - |
dc.contributor.author | Shishkina, E. | - |
dc.date.accessioned | 2022-02-08T11:43:42Z | - |
dc.date.available | 2022-02-08T11:43:42Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Dzarakhohov, A. Special functions as solutions to the Euler-Poisson-Darboux equation with a fractional power of the Bessel operator / A. Dzarakhohov, Luchko Yu., E. Shishkina // Mathematics. - 2021. - Vol.9.-Art. 1484. - Doi: org/10.3390/math9131484. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/45370 | - |
dc.description.abstract | In this paper, we consider fractional ordinary differential equations and the fractional Euler-Poisson-Darboux equation with fractional derivatives in the form of a power of the Bessel differential operator. Using the technique of the Meijer integral transform and its modification, fundamental solutions to these equations are derived in terms of the Fox-Wright function, the Fox H-function, and their particular cases. We also provide some explicit formulas for the solutions to the corresponding initial-value problems in terms of the generalized convolutions introduced in this paper | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | mathematical analysis | ru |
dc.subject | Fox-Wright function | ru |
dc.subject | H-function | ru |
dc.subject | fractional powers of the Bessel operator | ru |
dc.subject | fractional Euler-Poisson-Darboux equation | ru |
dc.subject | fractional ODE | ru |
dc.subject | Meijer integral transform | ru |
dc.title | Special functions as solutions to the Euler-Poisson-Darboux equation with a fractional power of the Bessel operator | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|