Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/45370
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDzarakhohov, A.-
dc.contributor.authorLuchko, Yu.-
dc.contributor.authorShishkina, E.-
dc.date.accessioned2022-02-08T11:43:42Z-
dc.date.available2022-02-08T11:43:42Z-
dc.date.issued2021-
dc.identifier.citationDzarakhohov, A. Special functions as solutions to the Euler-Poisson-Darboux equation with a fractional power of the Bessel operator / A. Dzarakhohov, Luchko Yu., E. Shishkina // Mathematics. - 2021. - Vol.9.-Art. 1484. - Doi: org/10.3390/math9131484.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/45370-
dc.description.abstractIn this paper, we consider fractional ordinary differential equations and the fractional Euler-Poisson-Darboux equation with fractional derivatives in the form of a power of the Bessel differential operator. Using the technique of the Meijer integral transform and its modification, fundamental solutions to these equations are derived in terms of the Fox-Wright function, the Fox H-function, and their particular cases. We also provide some explicit formulas for the solutions to the corresponding initial-value problems in terms of the generalized convolutions introduced in this paperru
dc.language.isoenru
dc.subjectmathematicsru
dc.subjectmathematical analysisru
dc.subjectFox-Wright functionru
dc.subjectH-functionru
dc.subjectfractional powers of the Bessel operatorru
dc.subjectfractional Euler-Poisson-Darboux equationru
dc.subjectfractional ODEru
dc.subjectMeijer integral transformru
dc.titleSpecial functions as solutions to the Euler-Poisson-Darboux equation with a fractional power of the Bessel operatorru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Shishkina_Special.pdf325.85 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.