DC Field | Value | Language |
dc.contributor.author | Ekincioglu, I. | - |
dc.contributor.author | Guliyev, V. S. | - |
dc.contributor.author | Shishkina, E. L. | - |
dc.date.accessioned | 2024-01-10T14:22:47Z | - |
dc.date.available | 2024-01-10T14:22:47Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Ekincioglu, I. Fractional weighted spherical mean and maximal inequality for the weighted spherical mean and its application to singular PDE / I. Ekincioglu, V.S. Guliyev, E.L. Shishkina // Journal of Mathematical Sciences. - 2022. - Vol.266.-P. 744-764. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/59188 | - |
dc.description.abstract | In this paper we establish a mean value property for the functions which is satisfied to Laplace-Bessel equation. Our results involve the generalized divergence theorem and the second Green’s identities relating the bulk with the boundary of a region on which differential Bessel operators act | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | mathematical analysis | ru |
dc.subject | Bessel operator | ru |
dc.subject | B-harmonic function | ru |
dc.subject | Laplace-Bessel operator | ru |
dc.subject | fractional weighted mean | ru |
dc.subject | maximal inequality | ru |
dc.subject | singular Euler-Poisson-Darboux equation | ru |
dc.title | Fractional weighted spherical mean and maximal inequality for the weighted spherical mean and its application to singular PDE | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|