DC Field | Value | Language |
dc.contributor.author | Dzhabrailov, A. L. | - |
dc.contributor.author | Shishkina, E. L. | - |
dc.date.accessioned | 2024-01-11T07:00:40Z | - |
dc.date.available | 2024-01-11T07:00:40Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Dzhabrailov, A.L. On the theory of spaces of generalized Bessel potentials / A.L. Dzhabrailov, E.L. Shishkina // Siberian Mathematical Journal. - 2023. - Vol.64, №4.-P. 968-981. | ru |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/59192 | - |
dc.description.abstract | Potential theory originates from the theory of electrostatic and gravitational potentials and the study of the Laplace, wave, Helmholtz, and Poisson equations. The celebrated Riesz potentials are the realizations of the real negative powers of the Laplace and wave operators. In the meantime, much attention in potential theory is paid to the Bessel potential generating the spaces of fractional smoothness | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | mathematical analysis | ru |
dc.subject | generalized Bessel potential | ru |
dc.subject | Bessel operator | ru |
dc.subject | weighted Dirichlet integral | ru |
dc.title | On the theory of spaces of generalized Bessel potentials | ru |
dc.type | Article | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|