Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/62461
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKlimenko, D.-
dc.contributor.authorStepanov, N.-
dc.contributor.authorJia Li-
dc.contributor.authorQihong Fang-
dc.contributor.authorZherebtsov, S. V.-
dc.date.accessioned2024-04-24T07:13:01Z-
dc.date.available2024-04-24T07:13:01Z-
dc.date.issued2021-
dc.identifier.citationMachine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-V-Zr system / D. Klimenko, N. Stepanov, Jia Li [et al.] // Materials. - 2021. - Vol.14, №3.-Art. 7213.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/62461-
dc.description.abstractThe aim of this work was to provide a guidance to the prediction and design of high-entropy alloys with good performance. New promising compositions of refractory high-entropy alloys with the desired phase composition and mechanical properties (yield strength) have been predicted using a combination of machine learning, phenomenological rules and CALPHAD modelingru
dc.language.isoenru
dc.subjecttechniqueru
dc.subjectmetal scienceru
dc.subjectalloysru
dc.subjecthigh entropy alloysru
dc.subjectmachine learningru
dc.subjectpredictionru
dc.subjectstrengthru
dc.subjectstructureru
dc.titleMachine learning-based strength prediction for refractory high-entropy alloys of the Al-Cr-Nb-Ti-V-Zr systemru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Klimenko_Machine Learning-Based_2021.pdf1.02 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.