Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/64204
Title: Machine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr system
Authors: Klimenko, D.
Stepanov, N.
Ryltsev, R.
Yurchenko, N.
Zherebtsov, S.
Keywords: technique
metal science
high-entropy alloys
machine learning
data
plasticity
phenomenological models
strength
Issue Date: 2024
Citation: Machine learning assisted design of new ductile high-entropy alloys: Application to Al-Cr-Nb-Ti-V-Zr system / D. Klimenko, N. Stepanov, R. Ryltsev [et al.] // Intermetallics. - 2024. - Vol.175.-Art. 108469. - URL: https://www.sciencedirect.com/science/article/pii/S0966979524002887.
Abstract: The search for new high-entropy alloys (HEAs) with desired properties is an urgent problem that is hardly solvable experimentally due to the extremely large number of possible alloy compositions. Here we address developing data-driven machine learning models (DDML) to predict the ductility of HEAs
URI: http://dspace.bsu.edu.ru/handle/123456789/64204
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Klimenko_Machine_24.pdf490.22 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.