Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/64216
Title: Search for low mass dark matter in DarkSide-50: the Bayesian network approach
Authors: Agnes, P.
Albuquerque, I. F. M.
Alexander, T.
Alton, A. K.
Kubankin, A.
Oleinik, A.
Shchagin, A.
Keywords: physics
theoretical physics
dark matter
Bayesian networks
Markov chain
probability distribution functions
background spectra
detectors
Issue Date: 2023
Citation: Search for low mass dark matter in DarkSide-50: the Bayesian network approach / P. Agnes, Albuquerque I.F.M., T. Alexander [et al.] // The European Physical Journal C. - 2023. - Vol.83, №4.-Art. 322. - Doi: 10.1140/epjc/s10052-023-11410-4.
Abstract: The article presents a new approach to the search for dark matter in the DarkSide-50 experiment based on Bayesian networks. Having formulated the problem in terms of Bayesian networks, a logical inference algorithm based on a Markov chain Monte Carlo was developed to calculate the a posteriori probability
URI: http://dspace.bsu.edu.ru/handle/123456789/64216
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Agnes_Search_Low_23.pdf1 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.