Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/7405
Title: Theorem about the number and structure of the singular points n-dimensional dynamical system of population dynamics Lotka-Volterra in context of informational analysis and modeling
Authors: Moskovkin, V. M.
Merkulov, S. I.
Suleiman, B. N. E.
Lesovik, R. V.
Keywords: mathematics
algebra
linear algebra
Lotka-Volterra’s model
population dynamics
number of singular points
binomial coefficients
linear algebraic equations
Issue Date: 2013
Citation: Theorem about the number and structure of the singular points n-dimensional dynamical system of population dynamics Lotka-Volterra in context of informational analysis and modeling / V.M. Moskovkin, S.I. Merkulov, B.N.E. Suleiman et al. ; Belgorod State University // World Applied Sciences Journal. - 2013. - Vol.25, №12.-P. 1751-1753. - doi: 10.5829/idosi.wasj.2013.25.12.7081.
Abstract: By elementary methods of combinatorial mathematics and uniqueness of solutions systems of linear algebraic equations for non degenerate cases proved a theorem about the number and structure of the singular points of n-dimensional dynamical system of population a dynamics Lotka-Volterra model. Showed that the number of singular points for this system is equal to 2 and their structure on a combination of zero nand nonzero coordinates coincides with the binomial coefficients
URI: http://dspace.bsu.edu.ru/handle/123456789/7405
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Moskovkin_Theorem about the Number.pdf113.83 kBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.