Skip navigation
BelSU DSpace logo

Please use this identifier to cite or link to this item: http://dspace.bsu.edu.ru/handle/123456789/31815
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVitokhina, N. N.-
dc.contributor.authorVirchenko, Yu. P.-
dc.contributor.authorZinchenko, N. A.-
dc.contributor.authorMotkina, N. N.-
dc.contributor.authorEsin, V. A.-
dc.contributor.authorBugayevskaya, A. N.-
dc.date.accessioned2020-06-11T07:33:08Z-
dc.date.available2020-06-11T07:33:08Z-
dc.date.issued2019-
dc.identifier.citationThe distribution density of square value probabilities functionality from trajectories of wiener process / N.N. Vitokhina, Yu.P. Virchenko, N.A. Zinchenko [et al.] // COMPUSOFT: An international journal of advanced computer technology. - 2019. - Vol.8, №6.-P. 3192-3196.ru
dc.identifier.urihttp://dspace.bsu.edu.ru/handle/123456789/31815-
dc.description.abstractIn the article authors develop an approach to calculating the statistic development probability for composite functions of square values in Gaussian casual process trajectories. Calculating distribution density for additive composite functions is based on standard Wiener process trajectories. Authors have developed a density formula for uniformly convergent decomposition, with x = 0. The convergence is exponentially fastru
dc.language.isoenru
dc.subjectmathematicsru
dc.subjectprobability theoryru
dc.subjectstationary processesru
dc.subjectcasual Gaussian processesru
dc.subjectWiener processru
dc.subjectadditive functionalityru
dc.subjectreturn transformation of Laplaceru
dc.subjectprobability distributionru
dc.subjectsuccessive approximationsru
dc.titleThe distribution density of square value probabilities functionality from trajectories of wiener processru
dc.typeArticleru
Appears in Collections:Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)

Files in This Item:
File Description SizeFormat 
Vitokhina_The distribution.pdf484.1 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.