DC Field | Value | Language |
dc.contributor.author | Motkina, N. N. | - |
dc.date.accessioned | 2013-04-15T07:07:17Z | - |
dc.date.available | 2013-04-15T07:07:17Z | - |
dc.date.issued | 2006 | - |
dc.identifier.citation | Motkina, N.N. On prime numbers of special kind on short intervals / N.N. Motkina ; Belgorod State University // Mathematical notes. - 2006. - Vol.79, N6.-P. 848-853. - doi: 10.1007/s11006-006-0095-6 | ru |
dc.identifier.other | doi: 10.1007/s11006-006-0095-6 | - |
dc.identifier.uri | http://dspace.bsu.edu.ru/handle/123456789/4310 | - |
dc.description.abstract | Suppose that the Riemann hypothesis holds. Suppose that ψ₁(x) = ∑ Λ(n), n≤x {(1/2)n¹/ᶜ}<1/2, where c is a real number, 1 < c ≤ 2 . We prove that, for H >N½⁺¹⁰ᵋ, ε > 0 , the following asymptotic formula is valid: ψ₁(N +H) - ψ₁(N) = H/2(1 + O(1/ Nᵋ) ) | ru |
dc.language.iso | en | ru |
dc.subject | mathematics | ru |
dc.subject | theory of numbers | ru |
dc.subject | sprime number | ru |
dc.subject | Riemann hypothesis | ru |
dc.subject | Chebyshev function | ru |
dc.subject | zeta function | ru |
dc.subject | Abel integral transformation | ru |
dc.title | On prime numbers of special kind on short intervals | ru |
dc.type | Article | ru |
dc.identifier.citationpublication | Mathematical notes | ru |
dc.identifier.citationnumber | 79 | ru |
dc.identifier.citationvolume | 6 | ru |
dc.identifier.citationfirstpage | 848 | ru |
dc.identifier.citationendpage | 853 | ru |
dc.description.refereed | yes | ru |
dc.description.institution | Belgorod State University | ru |
Appears in Collections: | Статьи из периодических изданий и сборников (на иностранных языках) = Articles from periodicals and collections (in foreign languages)
|